scholarly journals Earliness Per Se by Temperature Interaction on Wheat Development

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Helga Ochagavía ◽  
Paula Prieto ◽  
Meluleki Zikhali ◽  
Simon Griffiths ◽  
Gustavo A. Slafer
2019 ◽  
Vol 71 (6) ◽  
pp. 1956-1968 ◽  
Author(s):  
Paula Prieto ◽  
Helga Ochagavía ◽  
Simon Griffiths ◽  
Gustavo A Slafer

Abstract Wheat adaptation can be fine-tuned by earliness per se (Eps) genes. Although the effects of Eps genes are often assumed to act independently of the environment, previous studies have shown that they exhibit temperature sensitivity. The number of leaves and phyllochron are considered determinants of flowering time and the numerical components of yield include spikelets per spike and fertile floret number within spikelets. We studied the dynamics of leaf, spikelet, and floret development in near isogenic lines with either late or early alleles of Eps-D1 under seven temperature regimes. Leaf appearance dynamics were modulated by temperature, and Eps alleles had a greater effect on the period from flag leaf to heading than phyllochron. In addition, the effects of the Eps alleles on spikelets per spike were minor, and more related to spikelet plastochron than the duration of the early reproductive phase. However, fertile floret number was affected by the interaction between Eps alleles and temperature. So, at 9 °C, Eps-early alleles had more fertile florets than Eps-late alleles, at intermediate temperatures there was no significant difference, and at 18 °C (the highest temperature) the effect was reversed, with lines carrying the late allele producing more fertile florets. These effects were mediated through changes in floret survival; there were no clear effects on the maximum number of floret primordia.


2003 ◽  
Vol 141 (2) ◽  
pp. 149-154 ◽  
Author(s):  
M. L. APPENDINO ◽  
G. A. SLAFER

Differences in development among wheat cultivars are not only restricted to photoperiod and vernalization responses. When both requirements are fully satisfied differences may still arise due to earliness per se. It is not clear at present to what extent this trait is ‘intrinsically’ expressed (a constitutive trait) independently of the environmental conditions so that it might be selected under any thermal condition or if it may be altered to the extent of showing a crossover interaction with temperature in which the ranking of wheat genotypes may be altered. The present study assessed the influence of temperature on the intrinsic earliness for lines of diploid wheat characterized for their differences in a major gene for intrinsic earliness, but also possibly differing in their genetic background for other factors controlling this polygenic trait. To do so the lines were grown individually in two temperature regimes (16 and 23°C) under long days having previously been fully vernalized. Multiple comparisons analyses were carried out among lines of the same allelic group for the Eps-Am1 gene. Results indicated that within each group there were lines that did not differ in their earliness per se, others differed but without exhibiting any line×temperature interaction and finally different types of interaction were shown, including cases where the ranking of lines was altered depending on the growing temperature. It is thus possible that the selection of a genotype based on its earliness per se in an environment might not represent the same performance in another location where temperature varied significantly.


2014 ◽  
Vol 34 (3) ◽  
pp. 1023-1033 ◽  
Author(s):  
Meluleki Zikhali ◽  
Michelle Leverington-Waite ◽  
Lesley Fish ◽  
James Simmonds ◽  
Simon Orford ◽  
...  

2015 ◽  
Vol 35 (9) ◽  
Author(s):  
Hua Chen ◽  
Muhammad Iqbal ◽  
Enid Perez-Lara ◽  
Rong-Cai Yang ◽  
Curtis Pozniak ◽  
...  

2021 ◽  
Vol 182 (2) ◽  
pp. 24-33
Author(s):  
I. A. Zveinek ◽  
R. A. Abdullaev ◽  
B. A. Batasheva ◽  
E. E. Radchenko

Background. Paratypic variability of the development rates of barley accessions from the Republic of Dagestan was analyzed for five years in the Northwe st of Russia (Pushkin, St. Petersburg) and in the North Caucasus (Derbent, Dagestan). Responses to vernalization, photoperiodism and earliness per se were tested in contrasting environments to assess their effect on barley development. Such studies make it possible to identify valuable adaptable plant forms in the barley germplasm collection for further use in breeding practice.Materials and methods. In Dagestan, the duration of the period from shooting to heading was measured for 12 samples of barley accessions in winter and spring sowing trials. Twenty samples sown in spring in both regions were compared. An empirical indicator of plant development rate was used for barley: the criterion “the number of days by which the period from shooting to heading of an accession exceeds the minimum across a sample” (DPSH).Results and conclusions. Early barley accessions with a low norm of responsiveness were identified: k-3772, k-15013, k-15034, k-15036, k-15186, k-15192, k-21803 and k-23785 – they combined weak sensitivity to a short photoperiod and vernalizing temperatures, so they are promising for breeding in regions where the length of the growing season is a limiting factor. The effect of the responses of barley accessions from Dagestan to vernalization and a short photoperiod on the duration of the period from shooting to heading was on average 8 (5.1–10.6) days and on their earliness per se 6 (4.8–8.2) days. Paratypic variability reflects the range of variation for these indicators. In Dagestan, vernalization temperatures and insensitivity to a short day are the main factors determining the earliness of local barleys in their native environment.


Sign in / Sign up

Export Citation Format

Share Document