scholarly journals Repetitive mild traumatic brain injury alters diurnal locomotor activity and response to the light change in mice

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu-Syuan Wang ◽  
Wei Hsieh ◽  
Jia-Ru Chung ◽  
Tsuo-Hung Lan ◽  
Yun Wang

Abstract Mild traumatic brain injury (mTBI) is a common cause of brain damage with a high incidence of multiple mTBIs found among athletes and soldiers. The purpose of this study is to examine the diurnal behavioral changes after multiple mTBIs. Adult mice were anesthetized; mTBI was conducted by dropping a 30-g weight to the right temporal skull once (mTBI1) or three times (mTBI3) over 3-week. Open-field motor behavior was recorded for 3 days after the last mTBI. In the first 4-hour exploratory phase, mTBI1 or mTBI3 equally reduced locomotor activity. A significant reduction of locomotor activity was found in the dark cycle between 4–72 hour in mTBI1 or mTBI3 mice; higher motor activity was seen after mTBI3 compared to mTBI1. In the light cycle, mTBI3 mice demonstrated an earlier immobilization followed by hyperactivity. The response to light change significantly correlated with the number of impacts. The IBA1 and BAX protein levels were equally increased in the lesioned cortex after mTBI1 and mTBI3. mTBI3 selectively upregulated the expression of circadian clock gene Per1 in hypothalamus and hippocampus as well as iNOS expression in the lesioned side cortex. Our data suggest multiple mTBIs alter diurnal locomotor activity and response to the change of light, which may involve Per1 expression in the lesioned brain.

Brain Injury ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 172-178 ◽  
Author(s):  
Shadi Asadollahi ◽  
Kamran Heidari ◽  
Mehrdad Taghizadeh ◽  
Arash Mohammad Seidabadi ◽  
Morteza Jamshidian ◽  
...  

2019 ◽  
Vol 34 (2) ◽  
pp. 575-582 ◽  
Author(s):  
Morteza Kosari-Nasab ◽  
Ghaffar Shokouhi ◽  
Maryam Azarfarin ◽  
Maryam Bannazadeh Amirkhiz ◽  
Mehran Mesgari Abbasi ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Eric Eyolfson ◽  
Glenn R Yamakawa ◽  
Yannick Griep ◽  
Reid Collins ◽  
Thomas Carr ◽  
...  

Abstract While the physical and behavioral symptomologies associated with a single mild traumatic brain injury (mTBI) are typically transient, repetitive mTBIs (RmTBI) have been associated with persisting neurological deficits. Therefore, this study examined the progressive changes in behavior and the neuropathological outcomes associated with chronic RmTBI through adolescence and adulthood in male and female Sprague Dawley rats. Rats experienced 2 mTBIs/week for 15 weeks and were periodically tested for changes in motor behavior, cognitive function, emotional disturbances, and aggression. Brain tissue was examined for neuropathological changes in ventricle size and presentation of Iba1 and GFAP. We did not see progressively worse behavioral impairments with the accumulation of injuries or time, but did find evidence for neurological and functional change (motor disturbance, reduced exploration, reduced aggression, alteration in depressive-like behavior, deficits in short-term working memory). Neuropathological assessment of RmTBI animals identified an increase in ventricle size, prolonged changes in GFAP, and sex differences in Iba1, in the corpus callosum, thalamus, and medial prefrontal cortex. Telomere length reduced exponentially as the injury load increased. Overall, chronic RmTBI did not result in accumulating behavioral impairment, and there is a need to further investigate progressive behavioral changes associated with repeated injuries in adolescence and young adulthood.


2020 ◽  
Vol 37 (12) ◽  
pp. 1418-1430 ◽  
Author(s):  
Vikas Ghai ◽  
Shannon Fallen ◽  
David Baxter ◽  
Kelsey Scherler ◽  
Taek-Kyun Kim ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 342
Author(s):  
Ferry Wijanarko ◽  
Untung Alifianto ◽  
Hanis Setyono ◽  
Geizar Arsika Ramadhana ◽  
Affan Adib Sungkar ◽  
...  

Background: Mild traumatic brain injury (mTBI) is a health problem with an increasing incidence in many developed countries. The standard for examining mTBI is a CT scan, but it is costly, is not always available in all hospitals, and carries a risk of radiation. Meanwhile, S100β is a protein component produced by central nervous system cells. This study aims to determine the presence of changes in S100β protein in adult patients with mTBI during treatment as an alternative to examination. Methods: This research is an analytic observational quantitative study with a cross-sectional study approach to investigate changes in S100β protein levels in blood serum using the ELISA method of mTBI patients in the first 3 h posttrauma (pretest) and treatment on day 1 (27 h posttrauma/posttest). The research sample consisted of 22 people. This research was conducted in the Surgery Section, Sub-Division of Neurosurgery, Dr. Moewardi Public Hospital, during September–December 2019. The data were then analyzed using a discrimination test (comparing t-test means) and a nonparametric test (Wilcoxon). Results: There was a significant difference in mean S100β change between the pretest and posttest treatments. The S100β examination results at posttest decreased to 0.0223 + 0.0029 μg/l or decreased S100β by 21.7% after treatment. Previously, it was known that the mean of S100β at pretest was 0.0285 + 0.0137 μg/l. Conclusion: There was a significant change in S100β protein levels at each examination time. Changes in S100β levels that occurred were in the form of decreased levels from 3 h to 27 h posttrauma. Thus, S100β protein can be used as a parameter to assess the clinical development of adult patients with mTBI. Moreover, none of the patients with an S100β value >0.1 μg/l was found to be the cutoff value set by SNC in adult patients with mTBI for head CT scan.


2020 ◽  
Vol 185 (Supplement_1) ◽  
pp. 243-247
Author(s):  
Palamadai N Venkatasubramanian ◽  
Juan C Pina-Crespo ◽  
Kiran Mathews ◽  
Paul H Rigby ◽  
Matthew Smith ◽  
...  

Abstract Introduction Blast-induced mild traumatic brain injury was generated in a mouse model using a shock tube to investigate recovery and axonal injury from single blast. Methods A supersonic helium wave hit the head of anesthetized male young adult mice with a reflected pressure of 69 psi for 0.2 ms on Day 1. Subsequently, the mice were cardioperfused on Days 2, 5, or 12. The isolated brains were subjected to diffusion tensor imaging. Reduced fractional anisotropy (FA) indicated axonal injury. Results After single blast, FA showed a biphasic response in the corpus callosum with decrease on Days 2 and 12 and increase on Day 5. Conclusions Blast-induced mild traumatic brain injury in a mouse model follows a biphasic FA response within 12 days after a single blast similar to that reported for human subjects.


2016 ◽  
Vol 298 ◽  
pp. 111-124 ◽  
Author(s):  
Jessica N. Nichols ◽  
Alok S. Deshane ◽  
Tracy L. Niedzielko ◽  
Cory D. Smith ◽  
Candace L. Floyd

2019 ◽  
Vol 28 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
Jessica Brown ◽  
Katy O'Brien ◽  
Kelly Knollman-Porter ◽  
Tracey Wallace

Purpose The Centers for Disease Control and Prevention (CDC) recently released guidelines for rehabilitation professionals regarding the care of children with mild traumatic brain injury (mTBI). Given that mTBI impacts millions of children each year and can be particularly detrimental to children in middle and high school age groups, access to universal recommendations for management of postinjury symptoms is ideal. Method This viewpoint article examines the CDC guidelines and applies these recommendations directly to speech-language pathology practices. In particular, education, assessment, treatment, team management, and ongoing monitoring are discussed. In addition, suggested timelines regarding implementation of services by speech-language pathologists (SLPs) are provided. Specific focus is placed on adolescents (i.e., middle and high school–age children). Results SLPs are critical members of the rehabilitation team working with children with mTBI and should be involved in education, symptom monitoring, and assessment early in the recovery process. SLPs can also provide unique insight into the cognitive and linguistic challenges of these students and can serve to bridge the gap among rehabilitation and school-based professionals, the adolescent with brain injury, and their parents. Conclusion The guidelines provided by the CDC, along with evidence from the field of speech pathology, can guide SLPs to advocate for involvement in the care of adolescents with mTBI. More research is needed to enhance the evidence base for direct assessment and treatment with this population; however, SLPs can use their extensive knowledge and experience working with individuals with traumatic brain injury as a starting point for post-mTBI care.


Sign in / Sign up

Export Citation Format

Share Document