scholarly journals Floodplain land cover affects biomass distribution of fish functional diversity in the Amazon River

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Caroline C. Arantes ◽  
Kirk O. Winemiller ◽  
Alex Asher ◽  
Leandro Castello ◽  
Laura L. Hess ◽  
...  

Abstract Land-cover change often shifts the distribution of biomass in animal communities. However, the effects of land-cover changes on functional diversity remain poorly understood for many organisms and ecosystems, particularly, for floodplains. We hypothesize that the biomass distribution of fish functional diversity in floodplains is associated with land cover, which would imply that fish traits affect behavioral and/or demographic responses to gradients of land cover. Using data from surveys of 462 habitats covering a range of land-cover conditions in the Amazon River floodplain, we fitted statistical models to explain landscape-scale variation in functional diversity and biomass of all fish species as well as subsets of species possessing different functional traits. Forest cover was positively associated with fish biomass and the strength of this relationship varied according to functional groups defined by life history, trophic, migration, and swimming-performance/microhabitat-use traits. Forty-two percent of the functional groups, including those inferred to have enhanced feeding opportunities, growth, and/or reproductive success within forested habitats, had greater biomass where forest cover was greater. Conversely, the biomass of other functional groups, including habitat generalists and those that directly exploit autochthonous food resources, did not vary significantly in relation to forest cover. The niche space occupied by local assemblages (functional richness) and dispersion in trait abundances (functional dispersion) tended to increase with forest cover. Our study supports the expectation that deforestation in the Amazon River floodplain affects not only fish biomass but also functional diversity, with some functional groups being particularly vulnerable.

Sociobiology ◽  
2016 ◽  
Vol 63 (3) ◽  
pp. 941 ◽  
Author(s):  
Luana Priscila de Carvalho Pereira ◽  
Fábio Souto Almeida ◽  
André Barbosa Vargas ◽  
Marcel Santos de Araújo ◽  
Antônio José Mayhé-Nunes ◽  
...  

The present study aimed at assessing the effects of climate seasonality on poneromorph ants in the Brazilian Amazon, by studying variations in composition, richness, and taxonomic and functional diversity. The study was carried out in the Tapirapé-Aquiri National Forest, southeastern Pará State. We collected poneromorph ants in three areas of native forest with pitfall traps and sardine baits on the ground and vegetation, in two dry and rainy seasons. We collected 46 species of poneromorph ants, which belong to two subfamilies and eleven genera. The species composition, richness and taxonomic diversity did not vary significantly between seasons. There was no significant difference in the frequency of species of functional groups between dry and rainy seasons. There was no significant difference in the average richness and average diversity of functional groups between the dry and rainy seasons. In our study we found no seasonal differences in composition, taxonomic and functional richness and diversity of poneromorph ants in the Amazon, which is useful for future studies that aim at using those ants as bioindicators. In addition, the identification of the species made in the present study has special relevance as it contributes to advance the knowledge of poneromorph ant diversity in the Amazon.


2017 ◽  
Vol 19 (3) ◽  
pp. 431-440 ◽  
Author(s):  
Leandro Castello ◽  
Laura L Hess ◽  
Ram Thapa ◽  
David G McGrath ◽  
Caroline C Arantes ◽  
...  

2017 ◽  
Vol 55 (1) ◽  
pp. 386-395 ◽  
Author(s):  
Caroline C. Arantes ◽  
Kirk O. Winemiller ◽  
Miguel Petrere ◽  
Leandro Castello ◽  
Laura L. Hess ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244783
Author(s):  
Rodrigo Sarmiento-Garcés ◽  
Malva Isabel Medina Hernández

The loss of biodiversity—caused mainly by habitat destruction—is one of the environmental problems with major repercussions on ecosystem functioning. Nevertheless, our understanding of the functional consequences of habitat changes on the communities and ecosystems remains limited to a small number of case studies. We evaluated the change in taxonomic and functional diversity of copro-necrophagous beetles (Scarabaeinae) and their relationship with the varying environmental factors present in four habitats with different degrees of disturbance. Furthermore, we evaluated how changes in taxonomic and functional diversity affect the rates of excrement removal. The collections were carried out at four locations in the state of Santa Catarina, Southern Brazil, on natural systems with different degrees of disturbances (forests in advanced and initial succession) and agroecosystems (silviculture and pastures dedicated to livestock). We collected a total of 1266 dung beetles distributed in 35 species and classified into 11 functional groups. The taxonomic and functional diversity analyses showed that habitats that still maintain an arboreal stratum do not present differences between them, in contrast to habitats dedicated to livestock where there was a significant loss of species and functional groups. The distance between the trees, as well as the air and soil temperatures were determining factors in the selection of species and functional groups. Some of these environmental factors explain the differences in functional traits, represented as varying abundances of the species found. The rates of manure removal from the ecosystem were positively correlated to taxonomic and functional richness as well as biomass of beetles. Thus, we can conclude that habitats with tree strata have the capacity to preserve a larger proportion of the regional set of species as well as the important ones, while preserving the taxonomic and functional diversity and the ecosystem functions, such as the excrement removal rate.


2019 ◽  
Vol 286 (1908) ◽  
pp. 20190745 ◽  
Author(s):  
M. Schumm ◽  
S. M. Edie ◽  
K. S. Collins ◽  
V. Gómez-Bahamón ◽  
K. Supriya ◽  
...  

Functional diversity is an important aspect of biodiversity, but its relationship to species diversity in time and space is poorly understood. Here we compare spatial patterns of functional and taxonomic diversity across marine and terrestrial systems to identify commonalities in their respective ecological and evolutionary drivers. We placed species-level ecological traits into comparable multi-dimensional frameworks for two model systems, marine bivalves and terrestrial birds, and used global species-occurrence data to examine the distribution of functional diversity with latitude and longitude. In both systems, tropical faunas show high total functional richness (FR) but low functional evenness (FE) (i.e. the tropics contain a highly skewed distribution of species among functional groups). Functional groups that persist toward the poles become more uniform in species richness, such that FR declines and FE rises with latitude in both systems. Temperate assemblages are more functionally even than tropical assemblages subsampled to temperate levels of species richness, suggesting that high species richness in the tropics reflects a high degree of ecological specialization within a few functional groups and/or factors that favour high recent speciation or reduced extinction rates in those groups.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Ana Paula Lima do Couto-Santos ◽  
Lia D’Afonsêca Pedreira de Miranda ◽  
Davi Rodrigo Rossatto ◽  
Ligia Silveira Funch

Abstract We compared the functional diversity of community at edge and interior areas of an Atlantic forest fragment to test the hypothesis that higher functional diversity exists along edges - in consonance with their higher abundance and floristic diversity as compared to the interior of the forest. By considering a set of vegetative, reproductive and phenological traits and ecosystem service aspects of edge and interior environments, we defined plant functional groups using Cluster Analysis, followed by a silhouette width analysis, together with functional diversity indices of richness, divergence, evenness and dispersion. The main functional groups formed were similar between the edges and interior. Functional richness was the only index that demonstrated differences between edge and the interior. Alterations were perceived in relation to species richness and the Shannon index. Edge effects were not significant in the formation of functional groups. In contrast to our original hypothesis, similar groups were formed both along the edge in the interior - indicating that species played similar ecological roles in both environments, with similar responses to different environmental factors - so that forest edges were colonized by a series of different species that maintained diversity patterns similar to those found in the forest interior.


2018 ◽  
Vol 115 (4) ◽  
pp. 732-737 ◽  
Author(s):  
Stewart M. Edie ◽  
David Jablonski ◽  
James W. Valentine

Taxonomic diversity of benthic marine invertebrate shelf species declines at present by nearly an order of magnitude from the tropics to the poles in each hemisphere along the latitudinal diversity gradient (LDG), most steeply along the western Pacific where shallow-sea diversity is at its tropical maximum. In the Bivalvia, a model system for macroevolution and macroecology, this taxonomic trend is accompanied by a decline in the number of functional groups and an increase in the evenness of taxa distributed among those groups, with maximum functional evenness (FE) in polar waters of both hemispheres. In contrast, analyses of this model system across the two era-defining events of the Phanerozoic, the Permian–Triassic and Cretaceous–Paleogene mass extinctions, show only minor declines in functional richness despite high extinction intensities, resulting in a rise in FE owing to the persistence of functional groups. We hypothesize that the spatial decline of taxonomic diversity and increase in FE along the present-day LDG primarily reflect diversity-dependent factors, whereas retention of almost all functional groups through the two mass extinctions suggests the operation of diversity-independent factors. Comparative analyses of different aspects of biodiversity thus reveal strongly contrasting biological consequences of similarly severe declines in taxonomic diversity and can help predict the consequences for functional diversity among different drivers of past, present, and future biodiversity loss.


Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

Chapter 10 “Environmental DNA for functional diversity” discusses the potential of environmental DNA to assess functional diversity. It first focuses on DNA metabarcoding and discusses the extent to which this approach can be used and/or optimized to retrieve meaningful information on the functions of the target community. This knowledge usually involves coarsely defined functional groups (e.g., woody, leguminous, graminoid plants; shredders or decomposer soil organisms; pathogenicity or decomposition role of certain microorganisms). Chapter 10 then introduces metagenomics and metatranscriptomics approaches, their advantages, but also the challenges and solutions to appropriately sampling, sequencing these complex DNA/RNA populations. Chapter 10 finally presents several strategies and software to analyze metagenomes/metatranscriptomes, and discusses their pros and cons.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 275
Author(s):  
Mariana A. Tsianou ◽  
Maria Lazarina ◽  
Danai-Eleni Michailidou ◽  
Aristi Andrikou-Charitidou ◽  
Stefanos P. Sgardelis ◽  
...  

The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


Sign in / Sign up

Export Citation Format

Share Document