scholarly journals Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. Träber ◽  
K. Uhlmann ◽  
S. Girardo ◽  
G. Kesavan ◽  
K. Wagner ◽  
...  

AbstractMechanical stress exerted and experienced by cells during tissue morphogenesis and organ formation plays an important role in embryonic development. While techniques to quantify mechanical stresses in vitro are available, few methods exist for studying stresses in living organisms. Here, we describe and characterize cell-like polyacrylamide (PAAm) bead sensors with well-defined elastic properties and size for in vivo quantification of cell-scale stresses. The beads were injected into developing zebrafish embryos and their deformations were computationally analyzed to delineate spatio-temporal local acting stresses. With this computational analysis-based cell-scale stress sensing (COMPAX) we are able to detect pulsatile pressure propagation in the developing neural rod potentially originating from polarized midline cell divisions and continuous tissue flow. COMPAX is expected to provide novel spatio-temporal insight into developmental processes at the local tissue level and to facilitate quantitative investigation and a better understanding of morphogenetic processes.

2018 ◽  
Author(s):  
N. Träber ◽  
K. Uhlmann ◽  
S. Girardo ◽  
G. Kesavan ◽  
K. Wagner ◽  
...  

ABSTRACTMechanical stress exerted and experienced by cells during tissue morphogenesis and organ formation plays an important role in embryonic development. While techniques to quantify mechanical stresses in vitro are available, few methods exist for studying stresses in living organisms. Here, we describe and characterize cell-like polyacrylamide (PAAm) bead sensors with well-defined elastic properties and size for in vivo quantification of cell-scale stresses. The beads were injected into developing zebrafish embryos and their deformations were computationally analyzed to delineate spatio-temporal local acting stresses. With this computational analysis-based cell-scale stress sensing (COMPAX) we are able to detect pulsatile pressure propagation in the developing neural rod potentially originating from polarized midline cell divisions and continuous tissue flow. COMPAX is expected to provide novel spatiotemporal insight into developmental processes at the local tissue level and to facilitate quantitative investigation and a better understanding of morphogenetic processes.


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 411
Author(s):  
Nader Kameli ◽  
Anya Dragojlovic-Kerkache ◽  
Paul Savelkoul ◽  
Frank R. Stassen

In recent years, plant-derived extracellular vesicles (PDEVs) have gained the interest of many experts in fields such as microbiology and immunology, and research in this field has exponentially increased. These nano-sized particles have provided researchers with a number of interesting findings, making their application in human health and disease very promising. Both in vitro and in vivo experiments have shown that PDEVs can exhibit a multitude of effects, suggesting that these vesicles may have many potential future applications, including therapeutics and nano-delivery of compounds. While the preliminary results are promising, there are still some challenges to face, such as a lack of protocol standardization, as well as knowledge gaps that need to be filled. This review aims to discuss various aspects of PDEV knowledge, including their preliminary findings, challenges, and future uses, giving insight into the complexity of conducting research in this field.


2020 ◽  
Vol 2 (1) ◽  
pp. FDD28 ◽  
Author(s):  
Oleg Babii ◽  
Sergii Afonin ◽  
Tim Schober ◽  
Liudmyla V Garmanchuk ◽  
Liudmyla I Ostapchenko ◽  
...  

Aim: To verify whether photocontrol of biological activity could augment safety of a chemotherapeutic agent. Materials & methods: LD50 values for gramicidin S and photoisomeric forms of its photoswitchable diarylethene-containing analogs were determined using mice. The results were compared with data obtained from cell viability measurements taken for the same compounds. Absorption, Distribution, Metabolism, and Elimination (ADME) tests using a murine cancer model were conducted to get insight into the underlying reasons for the observed in vivo toxicity. Results: While in vitro cytotoxicity values of the photoisomers differed substantially, the differences in the observed LD50 values were less pronounced due to unfavorable pharmacokinetic parameters. Conclusion: Despite unfavorable pharmacokinetic properties as in the representative case studied here, there is an overall advantage to be gained in the safety profile of a chemotherapeutic agent via photocontrol. Nevertheless, optimization of the pharmacokinetic parameters of photoisomers is an important issue to be addressed during the development of photopharmacological drugs.


2003 ◽  
Vol 77 (20) ◽  
pp. 11274-11278 ◽  
Author(s):  
B. W. A. van der Strate ◽  
J. L. Hillebrands ◽  
S. S. Lycklama à Nijeholt ◽  
L. Beljaars ◽  
C. A. Bruggeman ◽  
...  

ABSTRACT The role of leukocytes in the in vivo dissemination of cytomegalovirus was studied in this experiment. Rat cytomegalovirus (RCMV) could be transferred to rat granulocytes and monocytes by cocultivation with RCMV-infected fibroblasts in vitro. Intravenous injection of purified infected granulocytes or monocytes resulted in a systemic infection in rats, indicating that our model is a powerful tool to gain further insight into CMV dissemination and the development of new antivirals.


2002 ◽  
Vol 74 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Lanny S. Liebeskind ◽  
Jiri Srogl ◽  
Cecile Savarin ◽  
Concepcion Polanco

Given the stability of the bond between a mercaptide ligand and various redox-active metals, it is of interest that Nature has evolved significant metalloenzymatic processes that involve key interactions of sulfur-containing functionalities with metals such as Ni, Co, Cu, and Fe. From a chemical perspective, it is striking that these metals can function as robust biocatalysts in vivo, even though they are often "poisoned" as catalysts in vitro through formation of refractory metal thiolates. Insight into the nature of this chemical discrepancy is under study in order to open new procedures in synthetic organic and organometallic chemistry.


1987 ◽  
Vol 104 (5) ◽  
pp. 1361-1374 ◽  
Author(s):  
J L Duband ◽  
S Dufour ◽  
K Hatta ◽  
M Takeichi ◽  
G M Edelman ◽  
...  

In avian embryos, somites constitute the morphological unit of the metameric pattern. Somites are epithelia formed from a mesenchyme, the segmental plate, and are subsequently reorganized into dermatome, myotome, and sclerotome. In this study, we used somitogenesis as a basis to examine tissue remodeling during early vertebrate morphogenesis. Particular emphasis was put on the distribution and possible complementary roles of adhesion-promoting molecules, neural cell adhesion molecule (N-CAM), N-cadherin, fibronectin, and laminin. Both segmental plate and somitic cells exhibited in vitro calcium-dependent and calcium-independent systems of cell aggregation that could be inhibited respectively by anti-N-cadherin and anti-N-CAM antibodies. In vivo, the spatio-temporal expression of N-cadherin was closely associated with both the formation and local disruption of the somites. In contrast, changes in the prevalence of N-CAM did not strictly accompany the remodeling of the somitic epithelium into dermamyotome and sclerotome. It was also observed that fibronectin and laminin were reorganized secondarily in the extracellular spaces after CAM-mediated contacts were modulated. In an in vitro culture system of somites, N-cadherin was lost on individual cells released from somite explants and was reexpressed when these cells reached confluence and established intercellular contacts. In an assay of tissue dissociation in vitro, antibodies to N-cadherin or medium devoid of calcium strongly and reversibly dissociated explants of segmental plates and somites. Antibodies to N-CAM exhibited a smaller disrupting effect only on segmental plate explants. In contrast, antibodies to fibronectin and laminin did not perturb the cohesion of cells within the explants. These results emphasize the possible role of cell surface modulation of CAMs during the formation and remodeling of some transient embryonic epithelia. It is suggested that N-cadherin plays a major role in the control of tissue remodeling, a process in which N-CAM is also involved but to a lesser extent. The substratum adhesion molecules, fibronectin and laminin, do not appear to play a primary role in the regulation of these processes but may participate in cell positioning and in the stabilization of the epithelial structures.


2017 ◽  
Vol 40 (10) ◽  
pp. 563-574 ◽  
Author(s):  
Stefania Marconi ◽  
Ettore Lanzarone ◽  
Hector De Beaufort ◽  
Michele Conti ◽  
Santi Trimarchi ◽  
...  

Introduction Predicting aortic growth in acute type B dissection is fundamental in planning interventions. Several factors are considered to be growth predictors in the literature and, among them, size and location of entry tears have been recognized to particularly influence the false lumen pressure. In this study, we develop an in vitro setting to analyze the actual impact of size and location of the entry tears on false lumen pressure, in the absence of other confounding factors such as the deformability of the aortic wall. Methods We formalize some indexes that synthetically describe the false lumen pressure with respect to the true lumen pressure. Then, we experimentally derive their values in several configurations of the in vitro setting, and we look for trends in the indexes with respect to the size and location of entry tears. Results: Results show that the tears have a relevant impact on the false lumen pressure, but that their size and location alone are not enough to explain the phenomena observed in vivo. Conclusions To predict the behavior of acute type B dissection, we therefore recommend not limiting to size and location, as many effects may derive from the interactions between these parameters and other patient characteristics.


Sign in / Sign up

Export Citation Format

Share Document