scholarly journals The influence of urban form on the grid integration of renewable energy technologies and distributed energy systems

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. T. D. Perera ◽  
Silvia Coccolo ◽  
Jean-Louis Scartezzini

AbstractStandard and newly designed building blocks for complex urban sites– also designated by urban archetypes - are used in this study to quantify the influence of urban forms on their energy demand and energy systems design. An energy hub, which consists on a multi-carrier energy system involving multiple energy conversion, storage and/or network technologies, is employed to quantify the impact of the urban morphology on the energy system requirements. This study reveals that urban archetypes have a notable influence on the heating and cooling energy demands of city districts that can be characterized using form factors and floor area ratio. However, the influence on demand profiles cannot be assessed based on the aforementioned indicators. The cost of energy systems can increase up to 50% due to the impact of urban forms that are well beyond the increase of peak and/or annual energy demands. In addition, renewable energy integration to the grid as well its utilization in districts is influenced by urban forms. This makes it essential to consider energy system design as a part of the urban planning process moving even beyond building simulation.

2019 ◽  
Vol 102 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Yuliana de Jesus Acosta-Silva ◽  
Irineo Torres-Pacheco ◽  
Yasuhiro Matsumoto ◽  
Manuel Toledano-Ayala ◽  
Genaro Martín Soto-Zarazúa ◽  
...  

The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind–solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production. This review describes the impact of solar–wind renewable energy systems in agricultural greenhouses.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5046
Author(s):  
Gokula Manikandan Senthil Kumar ◽  
Sunliang Cao

A positive energy system that produces more renewable energy than its demand while ensuring appropriate comfort levels is an excellent path towards increasing the portion of renewable energy, reducing carbon emission, and increasing the energy system’s overall performance. In particular, it has been believed as step forward towards zero energy systems. Recent progress in positive energy building and community levels is gaining interest among different stakeholders. However, an inadequate understanding of the positive energy system is widely noticed in many projects, and a shortage of standard details on the positive energy system still prevails in the research community. Therefore, a state-of-the-art review of positive energy building and community is conducted in this paper. Firstly, this paper begins with the definitions and concepts of positive energy buildings and communities. Secondly, it comprehensively describes the energy supplies, demands, indicators, storage, energy management, roles of stakeholders, and bottlenecks of positive energy systems. Thirdly, the main differences between positive energy buildings and communities are summarized. Fourthly, the impact of smart energy grids and new energy vehicles on the positive energy buildings and communities is derived. As a conclusion, this paper shows that even though all the energy-efficient buildings such as passive buildings, nearly zero energy buildings, zero energy buildings, positive energy buildings look like an up-trending scale of renewable penetration, considerable differences are visible among all, and the same thing applies to the community level. Furthermore, considerable differences exist when comparing between positive buildings and communities regarding both the technical and economic perspectives.


2021 ◽  
Vol 9 ◽  
Author(s):  
M. Thirunavukkarasu ◽  
Yashwant Sawle

Electrification in rural areas is relatively costly compared to urban areas. Therefore, the aim of this research is to identify the best combination of hybrid renewable energy systems (HRESs) to satisfy the load demand in a sustainable and cost-efficient way. The techno-economic study of stand-alone hybrid photovoltaic–wind turbine–diesel–battery-converter energy systems based on the hybrid optimization model for electric renewable (HOMER) simulation has been analyzed for various locations in the Tamil Nadu state, India. Various combinations of the systems have been compared and analyzed based on the performance of their technical parameters, costs, the electrical power production of each source, and unmet load. The findings indicated that the off-grid solar–wind–diesel–battery configuration is the most economical for all the sites among other system configurations. Comparing with conventional diesel generators among all the locations, a combination of solar/wind/diesel/battery is the economically best design for Thoothukudi, with the least and most reliable solution in terms of net present cost and cost of energy. Also, the impact of intermittent variables becomes significant, so sensitivity analysis for the various parameters has been carried out. The study finds that the least cost of electricity and the net present cost of electricity for Thoothukudi are achieved at 0.266 $/kWh and 138,197 $, respectively. This is economical compared to a stand-alone diesel system where the obtained COE is $1.88 and the NPC is $977523. In the stand-alone diesel operating mode, 41854 kg of CO2 is produced, which is higher than CO2 emissions associated with any other renewable energy systems. According to the results, the Kanyakumari location outperforms in terms of producing environmental pollutants with emission of 1,020 kg/y CO2 at their best. Moreover, the results of the proposed study imply that the proposed renewable energy system in remote sites could be a more economical measure.


Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 14
Author(s):  
Ezzeddine Touti ◽  
Hossem Zayed ◽  
Remus Pusca ◽  
Raphael Romary

Renewable energy systems have been extensively developed and they are attractive to become widespread in the future because they can deliver energy at a competitive price and generally do not cause environmental pollution. However, stand-alone energy systems may not be practical for satisfying the electric load demands, especially in places having unsteady wind speeds with high unpredictability. Hybrid energy systems seem to be a more economically feasible alternative to satisfy the energy demands of several isolated clients worldwide. The combination of these systems makes it possible to guarantee the power stability, efficiency, and reliability. The aim of this paper is to present a comprehensive analysis and to propose a technical solution to integrate a self-excited induction generator in a low power multisource system. Therefore, to avoid the voltage collapsing and the machine demagnetization, the various parameters have to be identified. This procedure allows for the limitation of a safe operating area where the best stability of the machine can be obtained. Hence, the load variation interval is determined. An improvement of the induction generator stability will be analyzed. Simulation results will be validated through experimental tests.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2879
Author(s):  
Xinxin Liu ◽  
Nan Li ◽  
Feng Liu ◽  
Hailin Mu ◽  
Longxi Li ◽  
...  

Optimal design of regional integrated energy systems (RIES) offers great potential for better managing energy sources, lower costs and reducing environmental impact. To capture the transition process from fossil fuel to renewable energy, a flexible RIES, including the traditional energy system (TES) based on the coal and biomass based distributed energy system (BDES), was designed to meet a regional multiple energy demand. In this paper, we analyze multiple scenarios based on a new rural community in Dalian (China) to capture the relationship among the energy supply cost, increased share of biomass, system configuration transformation, and renewable subsidy according to regional CO2 emission abatement control targets. A mixed integer linear programming (MILP) model was developed to find the optimal solutions. The results indicated that a 40.58% increase in the share of biomass in the RIES was the most cost-effective way as compared to the separate TES and BDES. Based on the RIES with minimal cost, by setting a CO2 emission reduction control within 40%, the RIES could ensure a competitive total annual cost as compared to the TES. In addition, when the reduction control exceeds 40%, a subsidy of 53.83 to 261.26 RMB/t of biomass would be needed to cover the extra cost to further increase the share of biomass resource and decrease the CO2 emission.


Author(s):  
Teresa Marat-Mendes ◽  
Maria Amélia Cabrita

The purpose of this paper is to provide an opportunity to explore the Habitat debate within ISUF. We quest that within this concept, as placed by Moudon (1997) in her inaugural paper to Urban Morphology, there is an intrinsic call towards an equilibrium between the various dimensions of urban form and a trans-disciplinary approach to the study of urban form, which deserves further investigation.According to Whitehand (2012) specific constrains affected the full concretization of such trans-disciplinary efforts, namely the further specialization of the disciplinary areas. Moreover, as argued by Marat-Mendes (2016), the focus placed by urban morphology on the physical dimensions of urban form has been significantly higher than on the social or human dimensions of the urban form, thus affecting in turn the above-identified equilibrium. In order to contribute to such debate, this paper presents the results of an ongoing investigation (Marat-Mendes, Cabrita, 2015), which seeks to recuperate the concept of Habitat within urban morphology. To do that, it first identifies the concept of Habitat as it was first defined in a number of seminal works to urban morphology (Demangeon, 1926). Secondly, it exposes how did such concept evolved throughout specific historical, disciplinary and methodological contexts (Deyong, 2011). And thirdly, it reveals the impact that such evolution had on the various problematics and scales of approach by those to which the Habitat issue was central for the study of urban from, including some contemporary contributions from various interdisciplinary areas, which seem to be recuperating that concept, although not explicitly. References Demangeon, A. (1926) ‘Un Questionnaire sur L’Habitat Rural, Annales de Géographie 35 (196), 289-292. Deyong, S. (2011) ‘Planetary habitat: the origins of a phantom movement’ The Journal of Architecture 6 (2), 113-128. Moudon, A. V. (1997) ‘The need for a Habitat Agenda within Urban Morphology’ Urban Morphology 1 3-10. Marat-Mendes, T. (2016) ‘Physical, social and cultural dimensions of Urban Morphology: redressing the balance?’ Urban Morphology 20 (2)167-168. Marat-Mendes, T., Cabrita, M. A. (2015) ‘A Morfologia Urbana na Arquitectura em Portugal. Notas sobre uma abordagem tipo-morfológica’, in Oliveira et al. (eds.) O estudo da forma urbana em Portugal (UPorto, Porto) 65-94. Whitehand, J. W. R. (2012) ‘Issues in Urban Morphology’ Urban Morphology 16 (1), 55-65.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012096
Author(s):  
Christoph Waibel ◽  
Shanshan Hsieh ◽  
Arno Schlüter

Abstract This paper demonstrates the impact of demand response (DR) on optimal multi-energy systems (MES) design with building integrated photovoltaics (BIPV) on roofs and façades. Building loads and solar potentials are assessed using bottom-up models; the MES design is determined using a Mixed-Integer Linear Programming model (energy hub). A mixed-use district of 170,000 m2 floor area including office, residential, retail, education, etc. is studied under current and future climate conditions in Switzerland and Singapore. Our findings are consistent with previous studies, which indicate that DR generally leads to smaller system capacities due to peak shaving. We further show that in both the Swiss and Singapore context, cost and emissions of the MES can be reduced significantly with DR. Applying DR, the optimal area for BIPV placement increases only marginally for Singapore (~1%), whereas for Switzerland, the area is even reduced by 2-8%, depending on the carbon target. In conclusion, depending on the context, DR can have a noticeable impact on optimal MES and BIPV capacities and should thus be considered in the design of future, energy efficient districts.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6223
Author(s):  
Bin Ye ◽  
Minhua Zhou ◽  
Dan Yan ◽  
Yin Li

The application of renewable energy has become increasingly widespread worldwide because of its advantages of resource abundance and environmental friendliness. However, the deployment of hybrid renewable energy systems (HRESs) varies greatly from city to city due to large differences in economic endurance, social acceptance and renewable energy endowment. Urban policymakers thus face great challenges in promoting local clean renewable energy utilization. To address these issues, this paper proposes a combined multi-objective optimization method, and the specific process of this method is described as follows. The Hybrid Optimization Model for electric energy was first used to examine five different scenarios of renewable energy systems. Then, the Technique for Order Preference by Similarity to an Ideal Solution was applied using eleven comprehensive indicators to determine the best option for the target area using three different weights. To verify the feasibility of this method, Xiongan New District (XND) was selected as an example to illustrate the process of selecting the optimal HRES. The empirical results of simulation tools and multi-objective decision-making show that the Photovoltaic-Diesel-Battery off-grid energy system (option III) and PV-Diesel-Hydrogen-Battery off-grid energy system (option V) are two highly feasible schemes for an HRES in XND. The cost of energy for these two options is 0.203 and 0.209 $/kWh, respectively, and the carbon dioxide emissions are 14,473 t/yr and 345 t/yr, respectively. Our results provide a reference for policymakers in deploying an HRES in the XND area.


Author(s):  
Martin Fleischmann ◽  
Ombretta Romice ◽  
Sergio Porta

Unprecedented urbanisation processes characterise the Great Acceleration, urging urban researchers to make sense of data analysis in support of evidence-based and large-scale decision-making. Urban morphologists are no exception since the impact of urban form on fundamental natural and social patterns (equity, prosperity and resource consumption’s efficiency) is now fully acknowledged. However, urban morphology is still far from offering a comprehensive and reliable framework for quantitative analysis. Despite remarkable progress since its emergence in the late 1950s, the discipline still exhibits significant terminological inconsistencies with regards to the definition of the fundamental components of urban form, which prevents the establishment of objective models for measuring it. In this article, we present a study of existing methods for measuring urban form, with a focus on terminological inconsistencies, and propose a systematic and comprehensive framework to classify urban form characters, where ‘urban form character’ stands for a characteristic (or feature) of one kind of urban form that distinguishes it from another kind. In particular, we introduce the Index of Elements that allows for a univocal and non-interpretive description of urban form characters. Based on such Index of Elements, we develop a systematic classification of urban form according to six categories (dimension, shape, spatial distribution, intensity, connectivity and diversity) and three conceptual scales (small, medium, large) based on two definitions of scale (extent and grain). This framework is then applied to identify and organise the urban form characters adopted in available literature to date. The resulting classification of urban form characters reveals clear gaps in existing research, in particular, in relation to the spatial distribution and diversity characters. The proposed framework reduces the current inconsistencies of urban morphology research, paving the way to enhanced methods of urban form systematic and quantitative analysis at a global scale.


Sign in / Sign up

Export Citation Format

Share Document