scholarly journals The origins and implications of glycerol ether lipids in China coastal wetland sediments

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiaoxia Lü ◽  
Xiaolei Liu ◽  
Changgui Xu ◽  
Jinming Song ◽  
Xuegang Li ◽  
...  

AbstractCoastal wetlands are terrestrial-marine transition zones harboring diverse active microbial communities. The origins of diverse glycerol ether lipids preserved in coastal wetlands are rarely investigated. 16 surface sediments were collected from the coastal wetland at Guangrao (GR), Changyi (CY) and Xiamen (XM), where both climate and sedimentary environment show significant differences. Ten groups of glycerol ether lipids, including isoprenoidal and branched glycerol dialkyl glycerol tetraethers (iGDGTs and bGDGTs), isoprenoidal and branched glycerol dialkanol diethers (iGDDs and bGDDs), hydroxylated isoprenoidal GDGTs and GDDs (OH-GDGTs and OH-GDDs), overly branched GDGTs (OB-GDGTs), sparsely branched GDGTs (SB-GDGTs), hybrid isoprenoid/branched GDGTs (IB-GDGTs) and a tentatively assigned H-shaped branched GDGTs (H-B-GDGTs) were detected and quantified. Sediments collected in the north (Guangrao and Changyi) contain, in general, a lower abundance of GDGT (3.7–55.9 ng/g sed) than samples from south (Xiamen; 251–1020 ng/g sed). iGDGTs and bGDGTs are the predominant components at all sites and account for 17.2–74.3% and 16.1–75.1% of total ether lipids, respectively. The relative abundance of iGDGTs decreases but that of bGDGTs increases with the distance from sea, suggesting a marine vs. terrestrial origin of iGDGT and bGDGTs, respectively. In addition, the methylation index (MIOB/B/SB) of branched GDGTs shows a significant inverse correlation with water content, suggesting that marine waters have a major influence on the microbial communities inhabiting wetland sediment. Such an assumption was confirmed by the distinct lipid pattern of three low water content (<5%) samples collected in an area isolated from tidal flushing. The other isoprenoidal ether lipids, such as iGDDs, OH-GDGTs and OH-GDGTs, have a similar distribution as iGDGTs, indicating a common biological source, so do the corresponding non-isoprenoidal ether lipid series with bGDGTs. The BIT value increases with increasing distance from the sea, which implies that the BIT index can be probably applied to trace past sea level change in costal wetland settings. The reconstructed temperature from TEX86 shows significant offset from observed data, but only little deviation for the MBT/CBT calculated temperature. This suggests that the MBT/CBT has the potential to reconstruct past temperatures in coastal wetland settings.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiliang Song ◽  
Yihao Zhu ◽  
Weifeng Chen

AbstractThe soil carbon (C) pools in coastal wetlands are known as “blue C” and have been damaged extensively owing to climate change and land reclamation. Because soil respiration (RS) is the primary mechanism through which soil carbon is released into the atmosphere at a global scale, investigating the dynamic characteristics of the soil respiration rate in reclaimed coastal wetlands is necessary to understand its important role in maintaining the global C cycle. In the present study, seasonal and diurnal changes in soil respiration were monitored in one bare wetland (CK) and two reclaimed wetlands (CT, a cotton monoculture pattern, and WM, a wheat–maize continuous cropping pattern) in the Yellow River Delta. At the diurnal scale, the RS at the three study sites displayed single-peak curves, with the lowest values occurring at midnight (00:00 a.m.) and the highest values occurring at midday (12:00 a.m.). At the seasonal scale, the mean diurnal RS of the CK, CT and WM in April was 0.24, 0.26 and 0.79 μmol CO2 m−2 s−1, and it increased to a peak in August for these areas. Bare wetland conversion to croplands significantly elevated the soil organic carbon (SOC) pool. The magnitude of the RS was significantly different at the three sites, and the yearly total amounts of CO2 efflux were 375, 513 and 944 g CO2·m−2 for the CK, CT and WM, respectively. At the three study sites, the surface soil temperature had a significant and positive relationship to the RS at both the diurnal and seasonal scales, and it accounted for 20–52% of the seasonal variation in the daytime RS. The soil water content showed a significant but negative relationship to the RS on diurnal scale only at the CK site, while it significantly increased with the RS on seasonal scale at all study sites. Although the RS showed a noticeable relationship to the combination of soil temperature and water content, the synergic effects of these two environment factors were not much higher than the individual effects. In addition, the correlation analysis showed that the RS was also influenced by the soil physico-chemical properties and that the soil total nitrogen had a closer positive relationship to the RS than the other nutrients, indicating that the soil nitrogen content plays a more important role in promoting carbon loss.


Science ◽  
1979 ◽  
Vol 203 (4375) ◽  
pp. 51-53 ◽  
Author(s):  
T. Tornabene ◽  
T. Langworthy
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ziyou Yang ◽  
Jing Li ◽  
Yongxiang Han ◽  
Chris J. Hassell ◽  
Kar-Sin Katherine Leung ◽  
...  

Abstract Background Despite an increasing number of surveys and a growing interest in birdwatching, the population and distribution of Asian Dowitcher (Limnodromus semipalmatus), a species endemic to the East Asian–Australasian and Central Asian Flyways, remains poorly understood, and published information about the species is largely outdated. In boreal spring 2019, over 22,432 Asian Dowitchers were recorded in a coastal wetland at Lianyungang, Jiangsu Province, China, constituting 97.5% of its estimated global population. Methods In 2019 and 2020, we conducted field surveys at Lianyungang to determine the numbers of Asian Dowitchers using the area during both southward and northward migrations. We also assessed the distribution and abundance of Asian Dowitchers elsewhere along the China coast by searching literature and consulting expert opinion. Results The coastal wetlands of Lianyungang are the most important stopover site for Asian Dowitchers during both northward and southward migrations; they supported over 90% of the estimated global population during northward migration in two consecutive years (May 2019 and 2020). This area also supported at least 15.83% and 28.42% (or 30.74% and 53.51% using modelled estimates) of the global population during southward migration in 2019 and 2020 respectively. Coastal wetlands in the west and north of Bohai Bay also have been important stopover sites for the species since the 1990s. Although comprehensive, long-term monitoring data are lacking, available evidence suggests that the population of the species may have declined. Conclusions The high concentration of Asian Dowitchers at Lianyungang during migration means the species is highly susceptible to human disturbances and natural stochastic events. The coastal wetlands of Lianyungang should be protected and potentially qualify for inclusion in China’s forthcoming nomination for World Heritage listing of Migratory Bird Sanctuaries along the Coast of Yellow Sea-Bohai Gulf of China (Phase II) in 2023. Additional research is needed to understand Asian Dowitchers’ distribution and ecology, as well as why such a high proportion of their population rely on the Lianyungang coast.


2021 ◽  
Vol 13 (20) ◽  
pp. 4106
Author(s):  
Shuai Wang ◽  
Mingyi Zhou ◽  
Qianlai Zhuang ◽  
Liping Guo

Wetland ecosystems contain large amounts of soil organic carbon. Their natural environment is often both at the junction of land and water with good conditions for carbon sequestration. Therefore, the study of accurate prediction of soil organic carbon (SOC) density in coastal wetland ecosystems of flat terrain areas is the key to understanding their carbon cycling. This study used remote sensing data to study SOC density potentials of coastal wetland ecosystems in Northeast China. Eleven environmental variables including normalized difference vegetation index (NDVI), difference vegetation index (DVI), soil adjusted vegetation index (SAVI), renormalization difference vegetation index (RDVI), ratio vegetation index (RVI), topographic wetness index (TWI), elevation, slope aspect (SA), slope gradient (SG), mean annual temperature (MAT), and mean annual precipitation (MAP) were selected to predict SOC density. A total of 193 soil samples (0–30 cm) were divided into two parts, 70% of the sampling sites data were used to construct the boosted regression tree (BRT) model containing three different combinations of environmental variables, and the remaining 30% were used to test the predictive performance of the model. The results show that the full variable model is better than the other two models. Adding remote sensing-related variables significantly improved the model prediction. This study revealed that SAVI, NDVI and DVI were the main environmental factors affecting the spatial variation of topsoil SOC density of coastal wetlands in flat terrain areas. The mean (±SD) SOC density of full variable models was 18.78 (±1.95) kg m−2, which gradually decreased from northeast to southwest. We suggest that remote sensing-related environmental variables should be selected as the main environmental variables when predicting topsoil SOC density of coastal wetland ecosystems in flat terrain areas. Accurate prediction of topsoil SOC density distribution will help to formulate soil management policies and enhance soil carbon sequestration.


Author(s):  
X. Chang ◽  
Q. Zhang ◽  
M. Luo ◽  
C. Dong

Wetland ecosystem plays an important role on the environment and sustainable socio-economic development. Based on the TM images in 2010 with a pretreament of Tasseled Cap transformation, three different methods are used to extract the Qinzhou Bay coastal wetlands using Supervised Classification (SC), Decision Trees (DT) and Object -oriented (OO) methods. Firstly coastal wetlands are picked out by artificial visual interpretation as discriminant standard. The result shows that when the same evaluation template used, the accuracy and Kappa coefficient of SC, DT and OO are 92.00 %, 0.8952; 89.00 %, 0.8582; 91.00 %, 0.8848 respectively. The total area of coastal wetland is 218.3 km<sup>2</sup> by artificial visual interpretation, and the extracted wetland area of SC, DT and OO is 219 km<sup>2</sup>, 193.70 km<sup>2</sup>, 217.40 km<sup>2</sup> respectively. The result indicates that SC is in the f irst place, followed by OO approach, and the third DT method when used to extract Qingzhou Bay coastal wetland.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 355
Author(s):  
Ana Barreiro ◽  
Alba Lombao ◽  
Angela Martín ◽  
Javier Cancelo-González ◽  
Tarsy Carballas ◽  
...  

Soil properties determining the thermal transmissivity, the heat duration and temperatures reached during soil heating are key factors driving the fire-induced changes in soil microbial communities. The aim of the present study is to analyze, under laboratory conditions, the impact of the thermal shock (infrared lamps reaching temperatures of 100 °C, 200 °C and 400 °C) and moisture level (0%, 25% and 50% per soil volume) on the microbial properties of three soil mixtures from different sites. The results demonstrated that the initial water content was a determinant factor in the response of the microbial communities to soil heating treatments. Measures of fire impact included intensity and severity (temperature, duration), using the degree-hours method. Heating temperatures produced varying thermal shock and impacts on biomass, bacterial activity and microbial community structure.


1984 ◽  
Vol 311 (17) ◽  
pp. 1080-1083 ◽  
Author(s):  
Nabanita S. Datta ◽  
Golder N. Wilson ◽  
Amiya K. Hajra

2020 ◽  
Vol 12 (24) ◽  
pp. 4114
Author(s):  
Shaobo Sun ◽  
Yonggen Zhang ◽  
Zhaoliang Song ◽  
Baozhang Chen ◽  
Yangjian Zhang ◽  
...  

Coastal wetlands provide essential ecosystem services and are closely related to human welfare. However, they can experience substantial degradation, especially in regions in which there is intense human activity. To control these increasingly severe problems and to develop corresponding management policies in coastal wetlands, it is critical to accurately map coastal wetlands. Although remote sensing is the most efficient way to monitor coastal wetlands at a regional scale, it traditionally involves a large amount of work, high cost, and low spatial resolution when mapping coastal wetlands at a large scale. In this study, we developed a workflow for rapidly mapping coastal wetlands at a 10 m spatial resolution, based on the recently emergent Google Earth Engine platform, using a machine learning algorithm, open-access Synthetic Aperture Radar (SAR) and optical images from the Sentinel satellites, and two terrain indices. We then generated a coastal wetland map of the Bohai Rim (BRCW10) based on the workflow. It has a producer accuracy of 82.7%, according to validation using 150 wetland samples. The BRCW10 data reflected finer information when compared to wetland maps derived from two sets of global high-spatial-resolution land cover data, due to the fusion of multiple data sources. The study highlights the benefits of simultaneously merging SAR and optical remote sensing images when mapping coastal wetlands.


2019 ◽  
Vol 11 (8) ◽  
pp. 952 ◽  
Author(s):  
Aizhu Zhang ◽  
Genyun Sun ◽  
Ping Ma ◽  
Xiuping Jia ◽  
Jinchang Ren ◽  
...  

Coastal wetland mapping plays an essential role in monitoring climate change, the hydrological cycle, and water resources. In this study, a novel classification framework based on the gravitational optimized multilayer perceptron classifier and extended multi-attribute profiles (EMAPs) is presented for coastal wetland mapping using Sentinel-2 multispectral instrument (MSI) imagery. In the proposed method, the morphological attribute profiles (APs) are firstly extracted using four attribute filters based on the characteristics of wetlands in each band from Sentinel-2 imagery. These APs form a set of EMAPs which comprehensively represent the irregular wetland objects in multiscale and multilevel. The EMAPs and original spectral features are then classified with a new multilayer perceptron (MLP) classifier whose parameters are optimized by a stability-constrained adaptive alpha for a gravitational search algorithm. The performance of the proposed method was investigated using Sentinel-2 MSI images of two coastal wetlands, i.e., the Jiaozhou Bay and the Yellow River Delta in Shandong province of eastern China. Comparisons with four other classifiers through visual inspection and quantitative evaluation verified the superiority of the proposed method. Furthermore, the effectiveness of different APs in EMAPs were also validated. By combining the developed EMAPs features and novel MLP classifier, complicated wetland types with high within-class variability and low between-class disparity were effectively discriminated. The superior performance of the proposed framework makes it available and preferable for the mapping of complicated coastal wetlands using Sentinel-2 data and other similar optical imagery.


Sign in / Sign up

Export Citation Format

Share Document