scholarly journals Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Carla Igual Gil ◽  
Mario Ost ◽  
Juliane Kasch ◽  
Sara Schumann ◽  
Sarah Heider ◽  
...  

AbstractPhysical activity is an important contributor to muscle adaptation and metabolic health. Growth differentiation factor 15 (GDF15) is established as cellular and nutritional stress-induced cytokine but its physiological role in response to active lifestyle or acute exercise is unknown. Here, we investigated the metabolic phenotype and circulating GDF15 levels in lean and obese male C57Bl/6J mice with long-term voluntary wheel running (VWR) intervention. Additionally, treadmill running capacity and exercise-induced muscle gene expression was examined in GDF15-ablated mice. Active lifestyle mimic via VWR improved treadmill running performance and, in obese mice, also metabolic phenotype. The post-exercise induction of skeletal muscle transcriptional stress markers was reduced by VWR. Skeletal muscle GDF15 gene expression was very low and only transiently increased post-exercise in sedentary but not in active mice. Plasma GDF15 levels were only marginally affected by chronic or acute exercise. In obese mice, VWR reduced GDF15 gene expression in different tissues but did not reverse elevated plasma GDF15. Genetic ablation of GDF15 had no effect on exercise performance but augmented the post exercise expression of transcriptional exercise stress markers (Atf3, Atf6, and Xbp1s) in skeletal muscle. We conclude that skeletal muscle does not contribute to circulating GDF15 in mice, but muscle GDF15 might play a protective role in the exercise stress response.

2018 ◽  
Vol 14 (1) ◽  
pp. 27-46 ◽  
Author(s):  
R.C. Avenatti ◽  
K.H. McKeever ◽  
D.W. Horohov ◽  
K. Malinowski

We hypothesised that the cortisol response to acute exercise, markers of oxidative stress, expression of inflammatory cytokines, heat shock protein (HSP)70 and HSP90 expression in whole blood and skeletal muscle, and HSP70 and HSP90 protein concentrations in skeletal muscle are altered by age and in response to acute submaximal exercise in horses. Young (n=6; 5.5±2.8 year) and aged (n=6; 22.6±2.25 year) unconditioned Standardbred mares underwent an acute submaximal exercise test. Blood samples were collected and analysed for plasma cortisol and malondialdehyde (MDA) concentrations, and for cytokine and HSP gene expression pre- and post-exercise. Gluteus medius biopsies were obtained for analysis of cytokine and HSP gene expression pre- and at 0, 4, 24 and 48 h post-exercise. Data were analysed for main effects using a two-way ANOVA for repeated measures. Post-hoc comparisons of means were conducted using Student-Neuman-Keuls for pair-wise multiple comparisons where appropriate. Acute submaximal exercise increased plasma cortisol concentration in both young and aged mares, and the duration of the post-exercise rise in cortisol was altered in aged horses. Plasma MDA concentration and expression of tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 were unchanged in blood and muscle. Exercise increased IL-1β expression in whole blood of young and aged mares, with young mares having greater exercise-induced expression at 2 (P<0.001) and 4 (P=0.019) h post-exercise. Both young and aged horses had increased HSP70 expression in whole blood following acute exercise, with young horses exhibiting 3-fold greater HSP70 expression than aged mares at 2 h post-exercise. HSP90 expression in whole blood following exercise was increased only in young horses. Both young and aged horses had increased HSP90 expression in skeletal muscle following exercise, but there was no difference due to age. However, the timing of HSP70 expression was different between young and aged horses. The age-related changes in cortisol and IL-1β expression following acute submaximal exercise can have implications for energy homeostasis and the adaption to such disturbances at a cellular and whole animal level. Quantification of HSP expression in whole blood may be a useful biomarker, with implications for cellular adaptation and survival in aged horses.


1999 ◽  
Vol 276 (1) ◽  
pp. E217-E221 ◽  
Author(s):  
Ronald N. Cortright ◽  
Donghai Zheng ◽  
Jared P. Jones ◽  
James D. Fluckey ◽  
Stephen E. DiCarlo ◽  
...  

The factors that regulate gene expression of uncoupling proteins 2 and 3 (UCP-2 and UCP-3) in skeletal muscle are poorly understood, but both genes are clearly responsive to the metabolic state of the organism. Therefore, we tested the hypothesis that denervation and acute and/or chronic exercise (factors that profoundly affect metabolism) would alter UCP-2 and UCP-3 gene expression. For the denervation studies, the sciatic nerve of rat and mouse hindlimb was sectioned in one leg while the contralateral limb served as control. Northern blot analysis revealed that denervation was associated with a 331% increase ( P < 0.001) in UCP-3 mRNA and a 200% increase ( P < 0.01) in UCP-2 mRNA levels in rat mixed gastrocnemius (MG) muscle. In contrast, denervation caused a 53% decrease ( P< 0.001) in UCP-3 and a 63% increase ( P < 0.01) in UCP-2 mRNA levels in mouse MG. After acute exercise (2-h treadmill running), rat UCP-3 mRNA levels were elevated (vs. sedentary control) 252% ( P < 0.0001) in white gastrocnemius and 63% ( P < 0.05) in red gastrocnemius muscles, whereas UCP-2 levels were unaffected. To a lesser extent, elevations in UCP-3 mRNA (22%; P < 0.01) and UCP-2 mRNA (55%; P < 0.01) levels were observed after acute exercise in the mouse MG. There were no changes in either UCP-2 or UCP-3 mRNA levels after chronic exercise (9 wk of wheel running). These results indicate that acute exercise and denervation regulate gene expression of skeletal muscle UCPs.


1996 ◽  
Vol 80 (2) ◽  
pp. 699-705 ◽  
Author(s):  
T. Tsakiridis ◽  
P. P. Wong ◽  
Z. Liu ◽  
C. D. Rodgers ◽  
M. Vranic ◽  
...  

Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.


2015 ◽  
Vol 55 (2) ◽  
pp. 159-168 ◽  
Author(s):  
Daniil V Popov ◽  
Evgeny A Lysenko ◽  
Tatiana F Vepkhvadze ◽  
Nadia S Kurochkina ◽  
Pavel A Maknovskii ◽  
...  

The goal of this study was to identify unknown transcription start sites of thePPARGC1A(PGC-1α) gene in human skeletal muscle and investigate the promoter-specific regulation ofPGC-1αgene expression in human skeletal muscle. Ten amateur endurance-trained athletes performed high- and low-intensity exercise sessions (70 min, 70% or 50%o2max). High-throughput RNA sequencing and exon–exon junction mapping were applied to analyse muscle samples obtained at rest and after exercise.PGC-1αpromoter-specific expression and activation of regulators of PGC-1α gene expression (AMPK, p38 MAPK, CaMKII, PKA and CREB1) after exercise were evaluated using qPCR and western blot. Our study has demonstrated that during post-exercise recovery, human skeletal muscle expresses thePGC-1αgene via two promoters only. As previously described, the additional exon 7a that contains a stop codon was found in all samples. Importantly, only minor levels of other splice site variants were found (and not in all samples). Constitutive expressionPGC-1αgene occurs via the canonical promoter, independent of exercise intensity and exercise-induced increase of AMPKThr172phosphorylation level. Expression ofPGC-1αgene via the alternative promoter is increased of two orders after exercise. This post-exercise expression is highly dependent on the intensity of exercise. There is an apparent association between expression via the alternative promoter and activation of CREB1.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Daniil Popov ◽  
Pavel Makhnovskii ◽  
Evgeny Lysenko ◽  
Olga Vinogradova

Objective Variety of processes including circadian rhythm and systemic factors affect expression of many genes in skeletal muscle during a day. Therefore, post-exercise gene expression depends on many factors: contractile activity per seas well as circadian rhythm, nerve activity, concentration of different substances in blood, feeding and fasting. In our study, we investigated specific for contractile activity changes in the transcriptome in untrained and trained (after an aerobic training programme) human skeletal muscle. The second goal was to examine effect of aerobic training on gene expression in muscle in basal state. Methods Seven untrained males performed the one-legged knee extension exercise (for 60 min) with the same relative intensity before and after a 2 month aerobic training programme (1 h/day, 5/week). Biopsy samples were taken at rest (basal state, 48 h after the previous exercise), 1 and 4 h after one-legged exercise from m. vastus lateralisof either leg. This approach allowed us to evaluate specific changes in the transcriptome associated with contractile activity. RNA­sequencing (84 samples in total; ~42 million reads/sample) was performed by HiSeq 2500 (Illumina). Results Two months aerobic training increased the aerobic capacity of the knee-extensor muscles (power at anaerobic threshold in incremental one-legged and cycling tests), the maximum rate of ADP-stimulated mitochondrial respiration in permeabilized muscle fibres and amounts of oxidative phosphorylation proteins. After one-legged exercise, expression of many genes was changed in exercised muscle (~1500) as well as in non-exercised muscle (~400). Pronounced changes in gene expression in non-exercised muscle may be associated with many factors, including circadian rhythm (result of GO analysis). To examine transcriptome changes specific for contractile activity, the difference in gene expression between legs was examined. In untrained muscle, one-legged exercise changed expression of ~1200 genes specific for contractile activity at each time point. Despite the same relative intensity of one-legged exercise, transcriptomic response in trained muscle was markedly lower (~300 genes) compare to untrained. We observed a strong overlap between transcriptomic responses (~250 genes) and particularly between enriched transcription factor binding sites in promoters of these genes in untrained and trained muscles. These sets of genes and transcription factors play the key role in adaptation of muscle to contractile activity independently on the level of muscular fitness. Surprisingly, 2 months aerobic training changed the expression of more than 1500 genes in basal state. Noteworthy, these genes demonstrated a small overlap (~200 genes) with genes related to specific response to acute exercise. Moreover, these genes were associated with significantly different biological processes than genes related to specific response to acute exercise. Conclusions Specific for contractile activity changes in the transcriptome in untrained and trained human skeletal muscle were revealed for the first time. After 2 month aerobic training, the specific transcriptome response to acute exercise become much less pronounced. A computational approach reveals common transcription factors important for adaptation of both untrained and trained muscle. We found out that adaptation of muscle to aerobic training associates not only with the transitory changes in gene expression after each exercise, but also with the marked changes in transcriptome in basal state. This work was supported by the Russian Science Foundation (14­15­00768).


2017 ◽  
Vol 313 (6) ◽  
pp. E737-E747 ◽  
Author(s):  
Bradley S. Gordon ◽  
Jennifer L. Steiner ◽  
Michael L. Rossetti ◽  
Shuxi Qiao ◽  
Leif W. Ellisen ◽  
...  

The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle.


2017 ◽  
Vol 313 (4) ◽  
pp. F887-F898 ◽  
Author(s):  
Suk-Jeong Kim ◽  
Ji-Eun Kim ◽  
Yong-Woon Kim ◽  
Jong-Yeon Kim ◽  
So-Young Park

Regulation of lipogenesis by pathophysiological factors in the liver and skeletal muscle is well understood; however, regulation in the kidney is still unclear. To elucidate nutritional regulation of lipogenic factors in the kidney, we measured the renal expression of lipogenic transcriptional factors and enzymes during fasting and refeeding in chow-fed and high-fat-fed mice. We also examined the regulatory effect of the liver X receptor (LXR) on the expression of lipogenic factors. The renal gene expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS) was reduced by fasting for 48 h and restored by refeeding, whereas the mRNA levels of forkhead box O (FOXO)1/3 were increased by fasting and restored by refeeding. Accordingly, protein levels of SREBP-1, FAS, and phosphorylated FOXO1/3 were reduced by fasting and restored by refeeding. The patterns of lipogenic factors expression in the kidney were similar to those in the liver and skeletal muscle. However, this phasic regulation of renal lipogenic gene expression was blunted in diet-induced obese mice. LXR agonist TO901317 increased the lipogenic gene expression and the protein levels of SREBP-1 precursor and FAS but not nuclear SREBP-1. Moreover, increases in insulin-induced gene mRNA and nuclear carbohydrate-responsive element binding protein (ChREBP) levels were observed in the TO901317-treated mice. These results suggest that the kidney shows flexible suppression and restoration of lipogenic factors following fasting and refeeding in lean mice, but this is blunted in obese mice. LXR is involved in the renal expression of lipogenic enzymes, and ChREBP may mediate the response.


2012 ◽  
Vol 122 (12) ◽  
pp. 599-606 ◽  
Author(s):  
Ragnhild Røysland ◽  
Gunnhild Kravdal ◽  
Arne Didrik Høiseth ◽  
Ståle Nygård ◽  
Pirouz Badr ◽  
...  

Whether reversible ischaemia in patients referred for exercise stress testing and MPI (myocardial perfusion imaging) is associated with changes in circulating cTn (cardiac troponin) levels is controversial. We measured cTnT with a sensitive assay before, immediately after peak exercise and 1.5 and 4.5 h after exercise stress testing in 198 patients referred for MPI. In total, 19 patients were classified as having reversible myocardial ischaemia. cTnT levels were significantly higher in patients with reversible myocardial ischaemia on MPI at baseline, at peak exercise and after 1.5 h, but not at 4.5 h post-exercise. In patients with reversible ischaemia on MPI, cTnT levels did not change significantly after exercise stress testing [11.1 (5.2–14.9) ng/l at baseline compared with 10.5 (7.2–16.3) ng/l at 4.5 h post-exercise, P=0.27; values are medians (interquartile range)]. Conversely, cTnT levels increased significantly during testing in patients without reversible myocardial ischaemia [5.4 (3.0–9.0) ng/l at baseline compared with 7.5 (4.6–12.4) ng/l, P<0.001]. In conclusion, baseline cTnT levels are higher in patients with MPI evidence of reversible myocardial ischaemia than those without reversible ischaemia. However, although cTnT levels increase during exercise stress testing in patients without evidence of reversible ischaemia, this response appears to be blunted in patients with evidence of reversible ischaemia. Mechanisms other than reversible myocardial ischaemia may play a role for acute exercise-induced increases in circulating cTnT levels.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Matthew Harber ◽  
Adam Konopka ◽  
Bozena Jemiolo ◽  
Todd Trappe ◽  
Scott Trappe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document