scholarly journals Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bridgette J. Connell ◽  
Lucas E. Hermans ◽  
Annemarie M. J. Wensing ◽  
Ingrid Schellens ◽  
Pauline J. Schipper ◽  
...  

Abstract HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD8+ T-cells, %CD70+ CD4+ T-cells, %CD169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003–1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065–1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.

2005 ◽  
Vol 79 (10) ◽  
pp. 6299-6311 ◽  
Author(s):  
Geoffrey H. Holm ◽  
Dana Gabuzda

ABSTRACT Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4+ and CD8+ T cells. Infection of primary T-cell cultures with ELI6 induced CD4+ T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4+ and CD8+ T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4+ T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8+ T cells was triggered by a soluble factor(s) secreted by CD4+ T cells. HIV-1 virions activated CD4+ and CD8+ T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25+HLA-DR+ T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4+ and CD8+ T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.


2013 ◽  
Vol 2 (1) ◽  
Author(s):  
Moustapha Mbow ◽  
Ndèye S.S. Santos ◽  
Makhtar Camara ◽  
Awa Ba ◽  
Aliou Niang ◽  
...  

Background: Tuberculosis (TB) has been shown to accelerate the clinical course of HIV infection, but the mechanisms by which this occurs are not well understood. Regulatory T-cells (Tregs)are known to dampen hyperactivation of the immune cells, but it remains unclear whether hyperactivation of T-cells in HIV infection is associated with a decrease of Tregs and what the effect Mycobacterium tuberculosis (MTB) co-infection has on T-cell activation and Tregs.Objectives: In this study, we aim to evaluate whether active TB is associated with the increased expression of T-cell activation markers and reduced number of Treg cells in HIV-1-infected patients.Methods: This study was conducted on 69 subjects consisting of 20 HIV-infected patients,20 HIV and MTB co-infected patients, 19 MTB-infected patients and 10 uninfected control subjects negative for both MTB and HIV. The frequencies of T-cell activation markers (CD38 and HLA-DR) and Treg cells (CD4+CD25+CD127-) were measured by flow cytometry.Results: Significantly higher expression of CD38 and HLA-DR on CD4+ and CD8+ T-cells was found in MTB and HIV co-infected patients compared with HIV-infected patients. However,no significant difference in the percentage of Treg cells was reported between HIV patients with TB and those without. The study also showed a negative correlation between regulatoryT-cells frequency and CD4+ T-cell counts.Conclusion: These results suggest that TB enhances the expression of peripheral T-cell activation markers during HIV infection, whilst having no impact on the percentages of Tregcells.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


2019 ◽  
Vol 16 (4) ◽  
pp. 302-314
Author(s):  
Chinnambedu Ravichandran Swathirajan ◽  
Ramachandran Vignesh ◽  
Greer Waldrop ◽  
Uma Shanmugasundaram ◽  
Pannerselvam Nandagopal ◽  
...  

Background:Anti-viral cytokine expressions by cytotoxic T-cells and lower activation rates have been reported to correlate with suppressed HIV replication in long-term non-progressors (LTNP). Immune mechanisms underlying disease non-progression in LTNP might vary with HIV-1 subtype and geographical locations.Objective:This study evaluates cytokine expression and T-cells activation in relation to disease non-progression in LTNP.Methods:HIV-1 Subtype C infected LTNP (n=20) and progressors (n=15) were enrolled and flowcytometry assays were performed to study HIV-specific CD8 T-cells expressing IL-2, IFN-γ, TNF-α and MIP-1β against gag and env peptides. CD4+ T-cell activation was evaluated by surface expression of HLADR and CD38.Results:Proportions of cytokines studied did not differ significantly between LTNP and progressors, while contrasting correlations with disease progression markers were observed in LTNP. CD4+ T-cell activation rates were significantly lower in LTNP compared to progressors which indicate the potential role of T-cell activation rates in disease non-progression in LTNP.Conclusion:LTNP and progressors showed similar CD8+ T-cell responses, but final conclusions can be drawn only by comparing multiple immune factors in larger LTNP cohort with HIV-1 infected individuals at various levels of disease progression. A possible role of HIV-1 subtype variation and ethnic differences in addition to host-genetic and viral factors cannot be ruled out.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4161-4164 ◽  
Author(s):  
Suha Saleh ◽  
Ajantha Solomon ◽  
Fiona Wightman ◽  
Miranda Xhilaga ◽  
Paul U. Cameron ◽  
...  

Latent HIV-1 infection of resting memory CD4+ T cells represents the major barrier to HIV-1 eradication. To determine whether the CCR7 ligands involved in lymphocyte migration can alter HIV-1 infection of resting CD4+ T cells, we infected purified resting CD4+ T cells after incubation with the chemokines CCL19 and CCL21. Incubation with CCL19 or CCL21 did not alter markers of T-cell activation or proliferation. However, after HIV-1 infection of CCL19- or CCL21-treated CD4+ T-cells, we observed low-level HIV-1 production but high concentrations of integrated HIV-1 DNA, approaching that seen in mitogen-stimulated T-cell blasts. Restimulation of CCL19-treated infected CD4+ T cells resulted in virus production consistent with establishment of postintegration latency. CCR7 ligands facilitate efficient entry of HIV-1 into resting CD4+ T cells. These studies demonstrate a unique action of the chemokines CCL19 and CCL21 and provide a novel model with which to study HIV-1 latency in vitro.


1995 ◽  
Vol 182 (6) ◽  
pp. 1727-1737 ◽  
Author(s):  
S I Staprans ◽  
B L Hamilton ◽  
S E Follansbee ◽  
T Elbeik ◽  
P Barbosa ◽  
...  

Little is known about the factors that govern the level of HIV-1 replication in infected individuals. Recent studies (using potent antiviral drugs) of the kinetics of HIV-1 replication in vivo have demonstrated that steady-state levels of viremia are sustained by continuous rounds of de novo infection and the associated rapid turnover of CD4+ T lymphocytes. However, no information is available concerning the biologic variables that determine the size of the pool of T cells that are susceptible to virus infection or the amount of virus produced from infected cells. Furthermore, it is not known whether all CD4+ T lymphocytes are equally susceptible to HIV-1 infection at a given time or whether the infection is focused on cells of a particular state of activation or antigenic specificity. Although HIV-1 replication in culture is known to be greatly facilitated by T cell activation, the ability of specific antigenic stimulation to augment HIV-1 replication in vivo has not been studied. We sought to determine whether vaccination of HIV-1-infected adults leads to activation of virus replication and the targeting of vaccine antigen-responsive T cells for virus infection and destruction. Should T cell activation resulting from exposure to environmental antigens prove to be an important determinant of the steady-state levels of HIV-1 replication in vivo and lead to the preferential loss of specific populations of CD4+ T lymphocytes, it would have significant implications for our understanding of and therapeutic strategies for HIV-1 disease. To begin to address these issues, HIV-1-infected individuals and uninfected controls were studied by measurement of immune responses to influenza antigens and quantitation of virion-associated plasma HIV-1 RNA levels at baseline and at intervals after immunization with the trivalent influenza vaccine. Influenza vaccination resulted in readily demonstrable but transient increases in plasma HIV-1 RNA levels, indicative of activation of viral replication, in HIV-1-infected individuals with preserved ability to immunologically respond to vaccine antigens. Activation of HIV-1 replication by vaccination was more often seen and of greater magnitude in individuals who displayed a T cell proliferative response to vaccine antigens at baseline and in those who mounted a significant serologic response after vaccination. The fold increase in viremia, as well as the rates of increase of HIV-1 in plasma after vaccination and rates of viral decline after peak viremia, were higher in individuals with higher CD4+ T cell counts.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 12 ◽  
Author(s):  
Aurélien Azam ◽  
Sergio Mallart ◽  
Stephane Illiano ◽  
Olivier Duclos ◽  
Catherine Prades ◽  
...  

Non-natural modifications are widely introduced into peptides to improve their therapeutic efficacy, but their impact on immunogenicity remains largely unknown. As the CD4 T-cell response is a key factor in triggering immunogenicity, we investigated the effect of introducing D-amino acids (Daa), amino isobutyric acid (Aib), N-methylation, Cα-methylation, reduced amide, and peptoid bonds into an immunoprevalent T-cell epitope on binding to a set of HLA-DR molecules, recognition, and priming of human T cells. Modifications are differentially accepted at multiple positions, but are all tolerated in the flanking regions. Introduction of Aib and Daa in the binding core had the most deleterious effect on binding to HLA-DR molecules and T-cell activation. Their introduction at the positions close to the P1 anchor residue abolished T-cell priming, suggesting they might be sufficient to dampen peptide immunogenicity. Other modifications led to variable effects on binding to HLA-DR molecules and T-cell reactivity, but none exhibited an increased ability to stimulate T cells. Altogether, non-natural modifications appear generally to diminish binding to HLA-DR molecules and hence T-cell stimulation. These data might guide the design of therapeutic peptides to make them less immunogenic.


AIDS ◽  
2013 ◽  
Vol 27 (10) ◽  
pp. 1545-1555 ◽  
Author(s):  
Patrick J. Schuler ◽  
Bernard J.C. Macatangay ◽  
Zenichiro Saze ◽  
Edwin K. Jackson ◽  
Sharon A. Riddler ◽  
...  

1993 ◽  
Vol 90 (23) ◽  
pp. 11094-11098 ◽  
Author(s):  
O K Haffar ◽  
M D Smithgall ◽  
J Bradshaw ◽  
B Brady ◽  
N K Damle ◽  
...  

Infection with the human immunodeficiency virus type 1 (HIV-1) requires T-cell activation. Recent studies have shown that interactions of the T-lymphocyte receptors CD28 and CTLA-4 with their counter receptor, B7, on antigen-presenting cells are required for optimal T-cell activation. Here we show that HIV-1 infection is associated with decreased expression of CD28 and increased expression of B7 on CD4+ T-cell lines generated from seropositive donors by alloantigen stimulation. Loss of CD28 expression was not seen on CD4+ T-cell lines from seronegative donors, but up-regulation of B7 expression was observed upon more prolonged culture. Both T-cell proliferation and interleukin 2 mRNA accumulation in HIV-1-infected cultures required costimulation with exogenous B7 because these events were blocked by CTLA4Ig, a soluble form of CTLA-4 that binds B7 with high avidity. In contrast, levels of HIV-1 RNA were not affected by CTLA4Ig, indicating that regulation of virus transcription in these cultures did not depend upon CD28-B7 engagement. Infected T cells could present alloantigen to fresh, uninfected CD4+ T cells, leading to increased proliferation and virus spread to the activated cells. Both of these events were blocked by CTLA4Ig. Thus, chronic activation of HIV-1-infected CD4+ T cells reduces expression of CD28 and increases expression of B7, thereby enabling these T cells to become antigen-presenting cells for uninfected CD4+ T cells; this might be another mechanism for HIV-1 transmission via T-cell-T-cell contact.


Sign in / Sign up

Export Citation Format

Share Document