scholarly journals Effects on cardiac function, remodeling and inflammation following myocardial ischemia–reperfusion injury or unreperfused myocardial infarction in hypercholesterolemic APOE*3-Leiden mice

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Niek J. Pluijmert ◽  
Cindy I. Bart ◽  
Wilhelmina H. Bax ◽  
Paul H. A. Quax ◽  
Douwe E. Atsma

Abstract Many novel therapies to treat myocardial infarction (MI), yielding promising results in animal models, nowadays failed in clinical trials for several reasons. The most used animal MI model is based on permanent ligation of the left anterior descending (LAD) coronary artery in healthy mice resulting in transmural MI, while in clinical practice reperfusion is usually accomplished by primary percutaneous coronary interventions (PCI) limiting myocardial damage and inducing myocardial ischemia–reperfusion (MI-R) injury. To evaluate a more similar murine MI model we compared MI-R injury to unreperfused MI in hypercholesterolemic apolipoprotein (APO)E*3-Leiden mice regarding effects on cardiac function, left ventricular (LV) remodeling and inflammation. Both MI-R and MI resulted in significant LV dilation and impaired cardiac function after 3 weeks. Although LV dilation, displayed by end-diastolic (EDV) and end-systolic volumes (ESV), and infarct size (IS) were restricted following MI-R compared to MI (respectively by 27.6% for EDV, 39.5% ESV, 36.0% IS), cardiac function was not preserved. LV-wall thinning was limited with non-transmural LV fibrosis in the MI-R group (66.7%). Two days after inducing myocardial ischemia, local leucocyte infiltration in the infarct area was decreased following MI-R compared to MI (36.6%), whereas systemic circulating monocytes were increased in both groups compared to sham (130.0% following MI-R and 120.0% after MI). Both MI-R and MI models against the background of a hypercholesterolemic phenotype appear validated experimental models, however reduced infarct size, restricted LV remodeling as well as a different distributed inflammatory response following MI-R resemble the contemporary clinical outcome regarding primary PCI more accurately which potentially provides better predictive value of experimental therapies in successive clinical trials.

2018 ◽  
Vol 49 (4) ◽  
pp. 1476-1491 ◽  
Author(s):  
Shu-Bo  Zhang ◽  
Tie-Jun Liu ◽  
Guo-Hua Pu ◽  
Bao-Yong Li ◽  
Xiao-Zeng Gao ◽  
...  

Background/Aims: Long non-coding RNA (lncRNA) and glucagon-like peptide 1 receptor (GLP-1R) are crucial for heart development and for adult heart structural maintenance and function. Herein, we performed a study to explore the effect of lncRNA LINC00652 (LINC00652) on myocardial ischemia-reperfusion (I/R) injury by targeting GLP-1R through the cyclic adenosine monophosphate-protein kinase A (cAMP/PKA) pathway. Methods: Bioinformatics software was used to screen the long-chain non-coding RNAs associated with myocardial ischemia-reperfusion and to predict target genes. The mRNA and protein levels of LINC00652, GLP-1R and CREB were detected by RT-qPCR and western blotting. In order to identify the interaction between LINC00652 and myocardial I/R injury, the cardiac function, the hemodynamic changes, the pathological changes of the myocardial tissues, the myocardial infarct size, and the apoptosis of myocardial cells of mice were measured. Meanwhile, the levels of serum IL-1β and TNF-α were detected. Results: LINC00652 was overexpressed in the myocardial cells of mice with myocardial I/R injury. GLP-1R is the target gene of LINC00652. We also determined higher levels of LINC00652 and GLP-1R in the I/R modeled mice. Additionally, si-LINC00652 decreased cardiac pathology, infarct size, apoptosis rates of myocardial cells, and levels of IL-1β and TNF-α, and increased GLP-1R expression cardiac function, normal hemodynamic index, and the expression and phosphorylation of GLP-1R and CREB proteins. Conclusion: Taken together, our key findings of the present highlight LINC00652 inhibits the activation of the cAMP/PKA pathway by targeting GLP-1R to reduce the protective effect of sevoflurane on myocardial I/R injury in mice.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ralf Erkens ◽  
Tatsiana Suvorava ◽  
Thomas R. Sutton ◽  
Bernadette O. Fernandez ◽  
Monika Mikus-Lelinska ◽  
...  

The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch that controls the expression of antioxidant and cytoprotective enzymes, including enzymes catalyzing glutathione de novo synthesis. In this study, we aimed to analyze whether Nrf2 deficiency influences antioxidative capacity, redox state, NO metabolites, and outcome of myocardial ischemia reperfusion (I/R) injury. In Nrf2 knockout (Nrf2 KO) mice, we found elevated eNOS expression and preserved NO metabolite concentrations in the aorta and heart as compared to wild types (WT). Unexpectedly, Nrf2 KO mice have a smaller infarct size following myocardial ischemia/reperfusion injury than WT mice and show fully preserved left ventricular systolic function. Inhibition of NO synthesis at onset of ischemia and during early reperfusion increased myocardial damage and systolic dysfunction in Nrf2 KO mice, but not in WT mice. Consistent with this, infarct size and diastolic function were unaffected in eNOS knockout (eNOS KO) mice after ischemia/reperfusion. Taken together, these data suggest that eNOS upregulation under conditions of decreased antioxidant capacity might play an important role in cardioprotection against I/R. Due to the redundancy in cytoprotective mechanisms, this fundamental antioxidant property of eNOS is not evident upon acute NOS inhibition in WT mice or in eNOS KO mice until Nrf2-related signaling is abrogated.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Li-ping Zhang ◽  
Yi-chuan Jiang ◽  
Xiao-feng Yu ◽  
Hua-li Xu ◽  
Min Li ◽  
...  

Objectives. Ginsenoside Rg3 is one of the ginsenosides which are the main constituents isolated from Panax ginseng. Previous study demonstrated that ginsenoside Rg3 had a protective effect against myocardial ischemia/reperfusion- (I/R-) induced injury. Objective. This study was designed to evaluate the effect of ginsenoside Rg3 on cardiac function impairment induced by myocardial I/R in rats. Methods. Sprague-Dawley rats were subjected to myocardial I/R. Echocardiographic and hemodynamic parameters and histopathological examination were carried out. The expressions of P53, Bcl-2, Bax, and cleaved caspase-3 and the levels of TNF-α and IL-1β in the left ventricles were measured. Results. Ginsenoside Rg3 increased a left ventricular fractional shortening and left ventricular ejection fraction. Treatment with ginsenoside Rg3 also alleviated increases of left ventricular end diastolic pressure and decreases of left ventricular systolic pressure and ±dp/dt in myocardial I/R-rats. Ginsenoside Rg3 decreased apoptosis cells through inhibiting the activation of caspase-3. Ginsenoside Rg3 also caused significant reductions of the contents of TNF-α and IL-1β in left ventricles of myocardial I/R-rats. Conclusion. The findings suggested that ginsenoside Rg3 possessed the effect of improving myocardial I/R-induced cardiac function impairment and that the mechanism of pharmacological action of ginsenoside Rg3 was related to its properties of antiapoptosis and anti-inflammation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haixia Qin ◽  
Siyuan Li ◽  
Zhenbing Liu

Background: There is no definite effect in the treatment of myocardial ischemia/reperfusion (I/R) injury in patients with acute ST-segment elevation myocardial infarction (STEMI). We evaluated the protective effect of Shexiang Baoxin Pill (SBP) on I/R injury in STEMI patients.Methods: STEMI patients were randomly divided into a primary percutaneous coronary intervention (PPCI) group (n = 52) and a PPCI + SBP group (n = 51). The area at risk of infarction (AAR) and final infarct size (FIS) were examined by single-photon emission computed tomography (SPECT). I/R injury was assessed using myocardial salvage (MS) and salvage index (SI) calculated from AAR and FIS.Results: The ST-segment resolution (STR) in the PPCI + SBP group was significantly higher than that in the PPCI group (p = 0.036), and the peak value of high-sensitivity troponin T (hsTNT) was lower than that in the PPCI group (p = 0.048). FIS in the PPCI + SBP group was smaller than that in the PPCI group (p = 0.047). MS (p = 0.023) and SI (p = 0.006) in the PPCI + SBP group were larger than those in the PPCI group. The left ventricular ejection fraction (LVEF) in the PPCI + SBP group was higher than that in the PPCI group (p = 0.049), and N-terminal pro-B type natriuretic peptide (NT-proBNP) level in the PPCI + SBP group was lower than that in the PPCI group (p = 0.048).Conclusions: SBP can alleviate I/R injury (MS and SI), decrease myocardial infarction area (peak value of hsTNT and FIS), and improve myocardial reperfusion (MBG and STR) and cardiac function (LVEF and NT-proBNP).


2020 ◽  
Vol 21 (18) ◽  
pp. 6935
Author(s):  
Woori Jo ◽  
Byung Sun Min ◽  
Hee-Young Yang ◽  
Na-Hye Park ◽  
Kyung-Ku Kang ◽  
...  

The incidence of myocardial infarction, among the causes of cardiovascular morbidity and mortality, is increasing globally. In this study, left ventricular (LV) dysfunction, including LV systolic and diastolic function, was investigated in a rat myocardial ischemia/reperfusion injury model with echocardiography. The homoisoflavanone sappanone A is known for its anti-inflammatory effects. Using echocardiography, we found that sappanone A administration significantly improved LV systolic and diastolic function in a rat myocardial ischemia/reperfusion injury model, especially in the early phase development of myocardial infarction. Based on myocardial infarct size, serum cardiac marker assay, and histopathological evaluation, sappanone A showed higher efficacy at the doses used in our experiments than curcumin and was evaluated for its potential to improve LV function.


2007 ◽  
Vol 292 (4) ◽  
pp. H1828-H1835 ◽  
Author(s):  
Giuseppina Milano ◽  
Sandrine Morel ◽  
Christophe Bonny ◽  
Michele Samaja ◽  
Ludwig K. von Segesser ◽  
...  

The c-Jun NH2-terminal kinase (JNK) pathway of the mitogen-activated protein kinase (MAPK) signaling cascade regulates cell function and survival after stress stimulation. Equally robust studies reported dichotomous results suggesting both protective and detrimental effects of JNK during myocardial ischemia-reperfusion (I/R). The lack of a highly specific JNK inhibitor contributed to this controversy. We recently developed a cell-penetrating, protease-resistant peptide inhibitor of JNK, d-JNKI-1. Here we report on the effects of d-JNKI-1 in myocardial I/R. d-JNKI-1 was tested in isolated-perfused adult rat hearts. Increased activation of JNK, p38-MAPK, and extracellular signal-regulated kinase-1/2 (ERK1/2), as assessed by kinase assays and Western blotting, occurred during I/R. d-JNKI-1 delivered before onset of ischemia prevented the increase in JNK activity while not affecting ERK1/2 and p38-MAPK activation. JNK inhibition reduced ischemic injury, as manifested by increased time to contracture ( P < 0.05) and decreased left ventricular end-diastolic pressure during ischemia ( P < 0.01), and enhanced posthypoxic recovery of systolic and diastolic function ( P < 0.01). d-JNKI-1 reduced mitochondrial cytochrome- c release, caspase-3 activation, and the number of apoptotic cells determined by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling ( P < 0.05), indicating suppression of the mitochondrial machinery of apoptosis. d-JNKI-1 delivered at the time of reperfusion did not improve functional recovery but still prevented apoptosis. In vivo, d-JNKI-1 reduced infarct size after coronary artery occlusion and reperfusion by ∼50% ( P < 0.01). In conclusion, d-JNKI-1 is an important compound that can be used in preclinical models to investigate the role of JNK signaling in vivo. Inhibition of JNK during I/R is cardioprotective in anesthetized rats in vivo.


2015 ◽  
Vol 308 (12) ◽  
pp. H1583-H1591 ◽  
Author(s):  
Chao Gao ◽  
Yi Liu ◽  
Qiujun Yu ◽  
Qiang Yang ◽  
Bing Li ◽  
...  

Tumor necrosis factor-α (TNF-α) antagonism alleviates myocardial ischemia-reperfusion (MI/R) injury. However, the mechanisms by which the downstream mediators of TNF-α change after acute antagonism during MI/R remain unclear. Adiponectin (APN) exerts anti-ischemic effects, but it is downregulated during MI/R. This study was conducted to investigate whether TNF-α is responsible for the decrease of APN, and whether antagonizing TNF-α affects MI/R injury by increasing APN. Male adult wild-type (WT), APN knockout (APN KO) mice, and those with cardiac knockdowns of APN receptors via siRNA injection were subjected to 30 min of MI followed by reperfusion. The TNF-α antagonist etanercept or globular domain of APN (gAD) was injected 10 min before reperfusion. Etanercept ameliorated MI/R injury in WT mice as evidenced by improved cardiac function, and reduced infarct size and cardiomyocyte apoptosis. APN concentrations were augmented in response to etanercept, followed by an increase in AMP-activated protein kinase phosphorylation. Etanercept still increased cardiac function and reduced infarct size and apoptosis in both APN KO and APN receptors knockdown mice. However, its potential was significantly weakened in these mice compared with the WT mice. TNF-α is responsible for the decrease in APN during MI/R. The cardioprotective effects of TNF-α neutralization are partially due to the upregulation of APN. The results provide more insight into the TNF-α-mediated signaling effects during MI/R and support the need for clinical trials to validate the efficacy of acute TNF-α antagonism in the treatment of MI/R injury.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 264-264 ◽  
Author(s):  
Chintan Gandhi ◽  
David G Motto ◽  
Melissa Jensen ◽  
Steven R. Lentz ◽  
Anil K Chauhan

Abstract Abstract 264 Background and objective: ADAMTS13 (A Disintegrin And Metalloprotease with Thrombospondin type I repeats-13) cleaves von Willebrand factor (VWF), a large multimeric protein that plays an important role in thrombus formation by binding to platelets following vascular injury. Epidemiological studies suggest that elevated VWF levels and reduced ADAMTS13 activity in the plasma are risk factors for myocardial infarction. It remains unknown, however, whether the ADAMTS13-VWF axis plays a causal role in the pathophysiology of myocardial infarction. We tested the hypothesis that ADAMTS13 reduces VWF-mediated acute myocardial ischemia/reperfusion (I/R) injury in mice. Methods: Myocardial infarction was induced in male mice (8–10 weeks of age) by ligating the left anterior descending coronary artery for 30 minutes followed by 23.5 hours of reperfusion. The extent of myocardium damage was evaluated by measuring infarct size (%) in 2 mm serial sections stained with 2% triphenyl-2, 3, 4-tetrazolium-chloride. Neutrophil infiltration and myocyte apoptosis in the left ventricular area was quantified by immunohistochemistry and TUNEL staining respectively. Results: Adamts13 -/- mice exhibited significantly increased infarct size (22.2 % ± 1.1 %, P <.01) compared with WT mice (16.9 % ± 1.2 %, P<0.05). Plasma levels of cardiac troponin T (cTnT), an index of myocyte injury, were significantly higher in Adamts13−/− mice compared with WT mice (P <0.01). Adamts13+/− mice, which have a 50% reduction in ADAMTS13 activity, had similar sized infarcts (16.6 ± 1.3%) and cTnT levels compared to those in WT mice. Larger infarcts in the Adamts13−/− mice were concordant with increased neutrophil infiltration and myocyte apoptosis compared with WT mice. Because VWF remains the only known substrate of ADAMTS13 in multiple experimental models, we hypothesized that ADAMTS13 reduces myocardial injury through its proteolytic effect on hyper adhesive ULVWF and /or VWF. Vwf−/− mice exhibited significantly reduced infarct size, neutrophil infiltration, and myocyte apoptosis compared with WT mice, suggesting a detrimental role for VWF in myocardial I/R injury. VWF-deficient mice have a defect in regulation of endothelial P-selectin due to the loss of Weibel-Palade body formation. To confirm that exacerbated myocardial I/R injury in the setting of ADAMTS13 deficiency is dependent on VWF rather than P-selectin, we compared WT and Adamts13−/− mice treated with anti-VWF inhibitory antibodies. Treating WT or Adamts13−/− mice with neutralizing antibodies to VWF prior to myocardial I/R injury significantly reduced infarct size compared with control Ig-treated mice, suggesting that exacerbated myocardial I/R injury observed in Adamts13−/− mice is entirely VWF-dependent. Finally, myocardial I/R injury in Adamts13−/−/Vwf−/− mice was similar to that in Vwf−/− mice, suggesting that the exacerbated myocardial I/R injury observed in the setting of ADAMTS13 deficiency is VWF-dependent. Conclusion: These findings reveal a new role for anti-thrombotic enzyme ADAMTS13 in reducing VWF-mediated myocardial ischemia/reperfusion injury. Disclosures: Lentz: Novo Nordisk A/S: Consultancy, Investigator Other.


Sign in / Sign up

Export Citation Format

Share Document