scholarly journals Masking terminal neo-epitopes of linear peptides through glycosylation favours immune responses towards core epitopes producing parental protein bound antibodies

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Robert Pon ◽  
Anne Marcil ◽  
Wangxue Chen ◽  
Christine Gadoury ◽  
Dean Williams ◽  
...  

Abstract Glycosylation of hydrophobic peptides at one terminus effectively increases their water-solubility, and conjugation through the opposing end to a carrier protein, renders them more immunogenic. Moreover, the glycosylation minimizes antibody responses to potentially deleterious, non-productive terminal neo-epitope regions of the peptides, and consequently shifts peptide immunogenicity towards the core amino acid residues. As proof of concept, glycopeptide-protein conjugates related to influenza hemagglutinin (HA), neuraminidase (NA), and the dimerization loop region of human epidermal growth factor receptor 2 (Her2), demonstrated a favorable production of core peptide specific antibodies as determined by ELISA studies. Furthermore, glycosylated Her2 peptide conjugate antisera were also shown to recognize full length Her2 protein by ELISA and at the cell surface through flow cytometry analysis. In contrast, unmasked peptide conjugates generated significant antibody populations that were specific to the terminal neo-epitope of the peptide immunogen that are notably absent in parental proteins. Antibodies generated in this manner to peptides in the dimerization loop of Her2 are also functional as demonstrated by the growth inhibition of Her2 expressing SKBR3 carcinoma cells. This method provides a technique to tailor-make epitope-specific antibodies that may facilitate vaccine, therapeutic and diagnostic antibody development.

2016 ◽  
Vol 435 ◽  
pp. 68-75 ◽  
Author(s):  
Yang Yang ◽  
Hai-Peng Liu ◽  
Qun Yu ◽  
Mei-Bing Yang ◽  
De-Min Wang ◽  
...  

Vaccine ◽  
1987 ◽  
Vol 5 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Paul A. van de Wiel ◽  
Maarten H. Witvliet ◽  
Dolf Evenberg ◽  
Henk J.G.M. Derks ◽  
E. Coen Beuvery

2018 ◽  
Vol 115 (34) ◽  
pp. E7905-E7913 ◽  
Author(s):  
Xingcheng Lin ◽  
Jeffrey K. Noel ◽  
Qinghua Wang ◽  
Jianpeng Ma ◽  
José N. Onuchic

Influenza hemagglutinin (HA) mediates viral entry into host cells through a large-scale conformational rearrangement at low pH that leads to fusion of the viral and endosomal membranes. Crystallographic and biochemical data suggest that a loop-to-coiled-coil transition of the B-loop region of HA is important for driving this structural rearrangement. However, the microscopic picture for this proposed “spring-loaded” movement is missing. In this study, we focus on understanding the transition of the B loop and perform a set of all-atom molecular dynamics simulations of the full B-loop trimeric structure with the CHARMM36 force field. The free-energy profile constructed from our simulations describes a B loop that stably folds half of the postfusion coiled coil in tens of microseconds, but the full coiled coil is unfavorable. A buried hydrophilic residue, Thr59, is implicated in destabilizing the coiled coil. Interestingly, this conserved threonine is the only residue in the B loop that strictly differentiates between the group 1 and 2 HA molecules. Microsecond-scale constant temperature simulations revealed that kinetic traps in the structural switch of the B loop can be caused by nonnative, intramonomer, or intermonomer β-sheets. The addition of the A helix stabilized the postfusion state of the B loop, but introduced the possibility for further β-sheet structures. Overall, our results do not support a description of the B loop in group 2 HAs as a stiff spring, but, rather, it allows for more structural heterogeneity in the placement of the fusion peptides during the fusion process.


1988 ◽  
Vol 8 (9) ◽  
pp. 3696-3702 ◽  
Author(s):  
S Bishayee ◽  
S Majumdar ◽  
C D Scher ◽  
S Khan

Two site-specific anti-peptide antibodies (AbP1 and AbP2) were raised against the platelet-derived growth factor (PDGF) receptor. These two sites correspond to amino acid residues 977 through 988 (peptide 1) and 932 through 947 (peptide 2) of the murine PDGF receptor. Both antibodies recognized human and murine PDGF receptors in immunoprecipitation and immunoblotting analyses. None of the antibodies was directed to phosphotyrosine. One of the antibodies (AbP2) showed unusual antigen recognition specificity. This antibody specifically recognized the tyrosine-phosphorylated PDGF receptor and not the unphosphorylated native receptor, suggesting that recognition by this antibody requires a specific conformation that is induced by PDGF-stimulated autophosphorylation.


1984 ◽  
Vol 47 (7) ◽  
pp. 562-569 ◽  
Author(s):  
FUN SUN CHU

During the past few years, several laboratories have prepared specific antibodies against aflatoxins B1, M1, B2a and Q1, ochratoxin A, T-2 toxin, and zearalenone. These antibodies were obtained from rabbits after immunizing with various mycotoxin-protein conjugates. With the availability of these antibodies, specific, simple and sensitive radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) procedures for monitoring mycotoxins and their metabolites in foods, feeds and body fluids have been developed. In this review, details are presented for the preparation of antibodies and the application of RIA and ELISA to determine aflatoxins B1 and M1, ochratoxin A and T-2 toxin in corn, peanuts, milk and other biological fluids. The sensitivity of ELISA for analysis of these mycotoxins in foods varied from 0.1 μg/L for aflatoxin M1 in milk to 5 μg/kg of aflatoxin B1 in peanuts. The advantages and disadvantages of ELISA for monitoring mycotoxins in foods and feeds are discussed. In addition, a description of recent progress on simplified clean-up procedures which may increase the sensitivity of immunoassays is presented.


1985 ◽  
Vol 98 (4) ◽  
pp. 949-962 ◽  
Author(s):  
Hajime FUJIO ◽  
Yutaka TAKAGAKI ◽  
Youn-Mun HA ◽  
Elvira Missako DOI ◽  
Amin SOEBANDRIO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document