scholarly journals Too anxious to control: the relation between math anxiety and inhibitory control processes

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
E. Van den Bussche ◽  
K. Vanmeert ◽  
B. Aben ◽  
D. Sasanguie

AbstractBased on the attentional control theory, math anxiety has been explained in terms of impaired inhibition, a key cognitive control function associated with the central executive. Inhibition allows us to suppress task-irrelevant interference when needed. Inspired by the Dual Mechanisms of Control theory, the current study aimed to disentangle the effect of math anxiety on two cognitive control aspects that can be identified in inhibition. Reactive control occurs after interference is detected and is mostly used in a context where interference is scarce. Proactive control is used to prevent and anticipate interference before it occurs and is preferred in contexts where interference is frequent. We used an arrow flanker task where the proportion of interference was manipulated to stimulate the use of a reactive or proactive control strategy. The results showed that response times on trials containing interference increased with math anxiety, but only in a reactive task context. In a proactive task context response times were not influenced by math anxiety. Our results suggest that math anxiety impairs reactive control. We hypothesize that this finding can be explained by a higher state of distractibility, triggered both by the reactive context and by math anxiety.

2021 ◽  
Vol 15 ◽  
Author(s):  
Grace M. Clements ◽  
Daniel C. Bowie ◽  
Mate Gyurkovics ◽  
Kathy A. Low ◽  
Monica Fabiani ◽  
...  

The resting-state human electroencephalogram (EEG) power spectrum is dominated by alpha (8–12 Hz) and theta (4–8 Hz) oscillations, and also includes non-oscillatory broadband activity inversely related to frequency (1/f activity). Gratton proposed that alpha and theta oscillations are both related to cognitive control function, though in a complementary manner. Alpha activity is hypothesized to facilitate the maintenance of representations, such as task sets in preparation for expected task conditions. In contrast, theta activity would facilitate changes in representations, such as the updating of task sets in response to unpredicted task demands. Therefore, theta should be related to reactive control (which may prompt changes in task representations), while alpha may be more relevant to proactive control (which implies the maintenance of current task representations). Less is known about the possible relationship between 1/f activity and cognitive control, which was analyzed here in an exploratory fashion. To investigate these hypothesized relationships, we recorded eyes-open and eyes-closed resting-state EEG from younger and older adults and subsequently tested their performance on a cued flanker task, expected to elicit both proactive and reactive control processes. Results showed that alpha power and 1/f offset were smaller in older than younger adults, whereas theta power did not show age-related reductions. Resting alpha power and 1/f offset were associated with proactive control processes, whereas theta power was related to reactive control as measured by the cued flanker task. All associations were present over and above the effect of age, suggesting that these resting-state EEG correlates could be indicative of trait-like individual differences in cognitive control performance, which may be already evident in younger adults, and are still similarly present in healthy older adults.


2020 ◽  
Author(s):  
Grace M. Clements ◽  
Daniel C. Bowie ◽  
Mate Gyurkovics ◽  
Kathy A. Low ◽  
Monica Fabiani ◽  
...  

AbstractThe resting-state human EEG power spectrum is dominated by alpha (8-12 Hz) and theta (4-8Hz) oscillations, and also includes non-oscillatory broadband activity inversely related to frequency (1/f activity). Gratton (2018) proposed that alpha and theta oscillations are both related to cognitive control function, though in a complementary manner. Alpha activity is hypothesized to facilitate the maintenance of representations, such as task sets in preparation for expected task conditions. In contrast, theta activity would facilitate changes in representations, such as the updating of task sets in response to unpredicted task demands. Therefore, theta should be related to reactive control (which may prompt changes in task representations), while alpha may be more relevant to proactive control (which implies the maintenance of current task representations). Less is known about the possible relationship between 1/f activity and cognitive control, which was analyzed here in an exploratory fashion. To investigate these hypothesized relationships, we recorded eyes-open and eyes-closed resting-state EEG from younger and older adults and subsequently tested their performance on a cued flanker task, expected to elicit both proactive and reactive control processes. Results showed that alpha power and 1/f slope were smaller in older than younger adults, whereas theta power did not show age-related reductions. Resting alpha power and 1/f slope were predictive of proactive control processes, whereas theta power was related to reactive control as measured by the cued flanker task. All predictive associations were present over and above the effect of age, suggesting that these resting-state EEG correlates could be indicative of trait-like individual differences in cognitive control performance, which may be already evident in younger adults, and are still similarly present in healthy older adults.


2009 ◽  
Vol 21 (8) ◽  
pp. 1461-1472 ◽  
Author(s):  
Ángel Correa ◽  
Anling Rao ◽  
Anna C. Nobre

Cognitive control can be triggered in reaction to previous conflict, as suggested by the finding of sequential effects in conflict tasks. Can control also be triggered proactively by presenting cues predicting conflict (“proactive control”)? We exploited the high temporal resolution of ERPs and controlled for sequential effects to ask whether proactive control based on anticipating conflict modulates neural activity related to cognitive control, as may be predicted from the conflict-monitoring model. ERPs associated with conflict detection (N2) were measured during a cued flanker task. Symbolic cues were either informative or neutral with respect to whether the target involved conflicting or congruent responses. Sequential effects were controlled by analyzing the congruency of the previous trial. The results showed that cueing conflict facilitated conflict resolution and reduced the N2 latency. Other potentials (frontal N1 and P3) were also modulated by cueing conflict. Cueing effects were most evident after congruent than after incongruent trials. This interaction between cueing and sequential effects suggests neural overlap between the control networks triggered by proactive and reactive signals. This finding clarifies why previous neuroimaging studies, in which reactive sequential effects were not controlled, have rarely found anticipatory effects upon conflict-related activity. Finally, the high temporal resolution of ERPs was critical to reveal a temporal modulation of conflict detection by proactive control. This novel finding suggests that anticipating conflict speeds up conflict detection and resolution. Recent research suggests that this anticipatory mechanism may be mediated by preactivation of ACC during the preparatory interval.


2021 ◽  
Author(s):  
◽  
Laura Kranz

<p>According to the Dual Mechanisms of Control (DMC) framework (Braver, 2012) distraction can be controlled either proactively (i.e., before the onset of a distractor) or reactively (i.e., after the onset of a distractor). Research clearly indicates that, when distractors are emotionally neutral, proactive mechanisms are more effective at controlling distraction than reactive mechanisms. However, whether proactive control mechanisms can control irrelevant emotional distractions as effectively as neutral distraction is not known. In the current thesis I examined cognitive control over emotional distraction. In Experiment 1, I tested whether proactive mechanisms can control emotional distraction as effectively as neutral distraction. Participants completed a distraction task. On each trial, they determined whether a centrally presented target letter (embedded amongst a circle of ‘o’s) was an ‘X’ or an ‘N’, while ignoring peripheral distractors (negative, neutral, or positive images). Distractors were presented on either a low proportion (25%) or a high proportion (75%) of trials, to evoke reactive and proactive cognitive control strategies, respectively. Emotional images (both positive and negative) produced more distraction than neutral images in the low distractor frequency (i.e., reactive control) condition. Critically, emotional distraction was almost abolished in the high distractor frequency condition; emotional images were only slightly more distracting than neutral images, suggesting that proactive mechanisms can control emotional distraction almost as effectively as neutral distraction. In Experiment 2, I replicated and extended Experiment 1. ERPs were recorded while participants completed the distraction task. An early index (the early posterior negativity; EPN) and a late index (the late positive potential; LPP) of emotional processing were examined to investigate the mechanisms by which proactive control minimises emotional distraction. The behavioural results of Experiment 2 replicated Experiment 1, providing further support for the hypothesis that proactive mechanisms can control emotional distractions as effectively as neutral distractions. While proactive control was found to eliminate early emotional processing of positive distractors, it paradoxically did not attenuate late emotional processing of positive distractors. On the other hand, proactive control eliminated late emotional processing of negative distractors. However, the early index of emotional processing was not a reliable index of negative distractor processing under either reactive or proactive conditions. Taken together, my findings show that proactive mechanisms can effectively control emotional distraction, but do not clearly establish the mechanisms by which this occurs.</p>


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S89-S89
Author(s):  
Anita Kwashie ◽  
Yizhou Ma ◽  
Andrew Poppe ◽  
Deanna Barch ◽  
Cameron Carter ◽  
...  

Abstract Background Cognitive control mechanisms enable an individual to regulate, coordinate, and sequence thoughts and actions to obtain desired outcomes. A theory of control specialization posits that proactive control is necessary for anticipatory planning and goal maintenance and recruits sustained lateral prefrontal activity, whereas reactive control, essential for adapting to transient changes, marshals a more extensive brain network (Braver, 2012). Increased task errors and reduced frontoparietal activity in proactive contexts is observed in severe psychopathology, including schizophrenia (Poppe et al., 2016), leading to the prediction that patients rely on reactive control more when performing such tasks. However, evidence of primate prefrontal ‘switch’ neurons, active during both proactive and reactive contexts, challenges the notion that cognitive control relies on discrete processing networks (Blackman et al., 2016). To examine this contradiction, we sought to characterize the distinctiveness between proactive and reactive control in healthy and patient populations using the Dot Pattern Expectancy Task (DPX). We also examined if a bias toward proactive or reactive control predicted behavioral metrics. Methods 44 individuals with schizophrenia (SZ) and 50 matched healthy controls (HC) completed 4 blocks of the DPX during a 3-Tesla fMRI scan (Poppe et al., 2016). Participants followed the ‘A-then-X’ rule, in which they pressed one button whenever an A cue followed an X probe, and pressed a different button for any other non-target stimulus sequence. We examined bilateral frontoparietal ROIs from the literature for evidence of cognitive control specialization as well as whole-brain analyses. Subsequent nonparametric tests and measures of neural response variation strengthened our interpretations. Participant d’-context (dependent on task accuracy) measured their tendency to engage in proactive control. Results Behavioral data revealed that HC participants showed a greater proclivity for proactive control than did their SZ counterparts. HC reaction time outpaced SZ reaction time in trials requiring successful marshalling of proactive control. Preliminary neuroimaging analyses suggest marginal between-group differences in control specialization. HC specialization appeared to be most apparent in diffuse frontal lateral regions, and bilateral posterior parietal cortex. Within the SZ group, specialization was most evident in bilateral posterior parietal cortex. Between-group control specialization differences were most apparent in right hemisphere frontal regions. Superior frontal gyrus and medial temporal lobe activity during proactive processes accounted for modest variance in d’-context. Discussion There were significant between-group differences in goal maintenance behavioral metrics such as reaction time and a tendency to engage in proactive control. Control specialization occurred more diffusely in controls compared to patient counterparts. However, activity in these regions had minimal ability to predict behavioral metrics. Overall, the relatively small size of control-specific areas compared to regions involved in dual processing offers support for the malleable nature of regions implicated in human cognitive control.


2015 ◽  
Vol 27 (6) ◽  
pp. 1125-1136 ◽  
Author(s):  
Nicolas Chevalier ◽  
Shaina Bailey Martis ◽  
Tim Curran ◽  
Yuko Munakata

Young children engage cognitive control reactively in response to events, rather than proactively preparing for events. Such limitations in executive control have been explained in terms of fundamental constraints on children's cognitive capacities. Alternatively, young children might be capable of proactive control but differ from older children in their metacognitive decisions regarding when to engage proactive control. We examined these possibilities in three conditions of a task-switching paradigm, varying in whether task cues were available before or after target onset. RTs, ERPs, and pupil dilation showed that 5-year-olds did engage in advance preparation, a critical aspect of proactive control, but only when reactive control was made more difficult, whereas 10-year-olds engaged in proactive control whenever possible. These findings highlight metacognitive processes in children's cognitive control, an understudied aspect of executive control development.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Tanya Dash ◽  
Bhoomika R. Kar

Background. Bilingualism results in an added advantage with respect to cognitive control. The interaction between bilingual language control and general purpose cognitive control systems can also be understood by studying executive control among individuals with bilingual aphasia.Objectives. The current study examined the subcomponents of cognitive control in bilingual aphasia. A case study approach was used to investigate whether cognitive control and language control are two separate systems and how factors related to bilingualism interact with control processes.Methods. Four individuals with bilingual aphasia performed a language background questionnaire, picture description task, and two experimental tasks (nonlinguistic negative priming task and linguistic and nonlinguistic versions of flanker task).Results. A descriptive approach was used to analyse the data using reaction time and accuracy measures. The cumulative distribution function plots were used to visualize the variations in performance across conditions. The results highlight the distinction between general purpose cognitive control and bilingual language control mechanisms.Conclusion. All participants showed predominant use of the reactive control mechanism to compensate for the limited resources system. Independent yet interactive systems for bilingual language control and general purpose cognitive control were postulated based on the experimental data derived from individuals with bilingual aphasia.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
R. Frömer ◽  
H. Lin ◽  
C. K. Dean Wolf ◽  
M. Inzlicht ◽  
A. Shenhav

AbstractThe amount of mental effort we invest in a task is influenced by the reward we can expect if we perform that task well. However, some of the rewards that have the greatest potential for driving these efforts are partly determined by factors beyond one’s control. In such cases, effort has more limited efficacy for obtaining rewards. According to the Expected Value of Control theory, people integrate information about the expected reward and efficacy of task performance to determine the expected value of control, and then adjust their control allocation (i.e., mental effort) accordingly. Here we test this theory’s key behavioral and neural predictions. We show that participants invest more cognitive control when this control is more rewarding and more efficacious, and that these incentive components separately modulate EEG signatures of incentive evaluation and proactive control allocation. Our findings support the prediction that people combine expectations of reward and efficacy to determine how much effort to invest.


2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Linda Truong ◽  
Kesaan Kandasamy ◽  
Lixia Yang

The dual mechanisms of control framework (DMC) proposes two modes of cognitive control: proactive and reactive control. In anticipation of an interference event, young adults primarily use a more proactive control mode, whereas older adults tend to use a more reactive one during the event, due to age-related deficits in working memory. The current study aimed to examine the effects of mood induction on cognitive control mode in older (ages 65+) compared to young adults (ages 18–30) with a standard letter-cue (Experiment 1) and a modified face-cue AX-CPT (Experiment 2). Mood induction into negative and/or positive mood versus neutral mood was conducted prior to the cognitive control task. Experiment 1 replicated the typical pattern of proactive control use in young adults and reactive control use in older adults. In Experiment 2, older adults showed comparable proactive control to young adults in their response time (RT). Mood induction showed little effect on cognitive control across the two experiments. These results did not reveal consistent effects of mood (negative or positive) on cognitive control mode in young and older adults, but discovered (or demonstrated) that older adults can engage proactive control when dichotomous face cues (female or male) are used in AX-CPT.


2021 ◽  
Author(s):  
Roksana Markiewicz ◽  
Ali Mazaheri ◽  
Andrea Krott

Performance differences between bilingual and monolingual participants on conflict tasks can be affected by the balance of various sub-processes such as monitoring and stimulus categorisation. Here we investigated the effect of bilingualism on these sub-processes during a conflict task with medium monitoring demand. We examined the behavioural and evoked potentials from a group of bilingual and monolingual speakers during a flanker task with 25% incongruent trials. We analysed behavioural differences by means of averaged response times and ex-Gaussian analyses of response time distributions. For the evoked potentials we focused on the N2 (implicated to be involved in monitoring) and P300 (implicated to be involved in categorisation) responses. We found that bilinguals had significantly longer response distribution tails compared to monolinguals. Additionally, bilinguals exhibited a more pronounced N2 and smaller P3 components compared to their monolingual counterparts, independent of experimental condition, suggesting enhanced monitoring processes and reduced categorisation effort. Importantly, N2 amplitudes were positively and P3 amplitudes were negatively related to the length of response distribution tails. We postulate that these results reflect an overactive monitoring system in bilinguals in a task of medium monitoring demand. This enhanced monitoring leads to less effortful categorisation, but also occasionally to slow responses. These results suggest that changes of the cognitive control system due to bilingual experience changes the balance of processes during conflict tasks, potentially leading to a small behavioural disadvantage.


Sign in / Sign up

Export Citation Format

Share Document