scholarly journals Metacognitive Processes in Executive Control Development: The Case of Reactive and Proactive Control

2015 ◽  
Vol 27 (6) ◽  
pp. 1125-1136 ◽  
Author(s):  
Nicolas Chevalier ◽  
Shaina Bailey Martis ◽  
Tim Curran ◽  
Yuko Munakata

Young children engage cognitive control reactively in response to events, rather than proactively preparing for events. Such limitations in executive control have been explained in terms of fundamental constraints on children's cognitive capacities. Alternatively, young children might be capable of proactive control but differ from older children in their metacognitive decisions regarding when to engage proactive control. We examined these possibilities in three conditions of a task-switching paradigm, varying in whether task cues were available before or after target onset. RTs, ERPs, and pupil dilation showed that 5-year-olds did engage in advance preparation, a critical aspect of proactive control, but only when reactive control was made more difficult, whereas 10-year-olds engaged in proactive control whenever possible. These findings highlight metacognitive processes in children's cognitive control, an understudied aspect of executive control development.

2020 ◽  
Author(s):  
Jesse C Niebaum ◽  
Nicolas Chevalier ◽  
Ryan Mori Guild ◽  
Yuko Munakata

Developmental changes in executive function are often explained in terms of core cognitive processes and associated neural substrates. For example, younger children tend to engage control reactively in the moment as needed, whereas older children increasingly engage control proactively, in anticipation of needing it. Such developments may reflect increasing capacities for active maintenance dependent upon dorsolateral prefrontal cortex. However, younger children will engage proactive control when reactive control is made more difficult, suggesting that developmental changes may also reflect decisions about whether to engage control, and how. We tested awareness of temporal control demands and associated task choices in 5- and 10-year-olds and adults using a demand selection task. Participants chose between one task that enabled proactive control and another task that enabled reactive control. Adults reported awareness of these different control demands and preferentially played the proactive task option. Ten-year-olds reported awareness of control demands but selected task options at chance. Five-year-olds showed neither awareness nor task preference, but a subsample who exhibited awareness of control demands preferentially played the reactive task option, mirroring their typical control mode. Thus, developmental improvements in executive function may in part reflect better awareness of cognitive demands and adaptive behavior, which may in turn reflect changes in dorsal anterior cingulate in signaling task demands to lateral prefrontal cortex.


2021 ◽  
Author(s):  
◽  
Laura Kranz

<p>According to the Dual Mechanisms of Control (DMC) framework (Braver, 2012) distraction can be controlled either proactively (i.e., before the onset of a distractor) or reactively (i.e., after the onset of a distractor). Research clearly indicates that, when distractors are emotionally neutral, proactive mechanisms are more effective at controlling distraction than reactive mechanisms. However, whether proactive control mechanisms can control irrelevant emotional distractions as effectively as neutral distraction is not known. In the current thesis I examined cognitive control over emotional distraction. In Experiment 1, I tested whether proactive mechanisms can control emotional distraction as effectively as neutral distraction. Participants completed a distraction task. On each trial, they determined whether a centrally presented target letter (embedded amongst a circle of ‘o’s) was an ‘X’ or an ‘N’, while ignoring peripheral distractors (negative, neutral, or positive images). Distractors were presented on either a low proportion (25%) or a high proportion (75%) of trials, to evoke reactive and proactive cognitive control strategies, respectively. Emotional images (both positive and negative) produced more distraction than neutral images in the low distractor frequency (i.e., reactive control) condition. Critically, emotional distraction was almost abolished in the high distractor frequency condition; emotional images were only slightly more distracting than neutral images, suggesting that proactive mechanisms can control emotional distraction almost as effectively as neutral distraction. In Experiment 2, I replicated and extended Experiment 1. ERPs were recorded while participants completed the distraction task. An early index (the early posterior negativity; EPN) and a late index (the late positive potential; LPP) of emotional processing were examined to investigate the mechanisms by which proactive control minimises emotional distraction. The behavioural results of Experiment 2 replicated Experiment 1, providing further support for the hypothesis that proactive mechanisms can control emotional distractions as effectively as neutral distractions. While proactive control was found to eliminate early emotional processing of positive distractors, it paradoxically did not attenuate late emotional processing of positive distractors. On the other hand, proactive control eliminated late emotional processing of negative distractors. However, the early index of emotional processing was not a reliable index of negative distractor processing under either reactive or proactive conditions. Taken together, my findings show that proactive mechanisms can effectively control emotional distraction, but do not clearly establish the mechanisms by which this occurs.</p>


2019 ◽  
Vol 84 (8) ◽  
pp. 2090-2110
Author(s):  
Gizem Arabacı ◽  
Benjamin A. Parris

Abstract Inattention is a symptom of many clinical disorders including attention deficit hyperactivity disorder (ADHD) and is thought to be primarily related to limitations in working memory. In two studies, we investigated the implications of inattention for task switching performance. In study one, we measured task switching performance using predictable and unpredictable conditions in adults who self-rated inattention and other ADHD-related tendencies. Tasks required proactive control and reactive control, respectively, under both high and low working memory loads. Results revealed that inattentive, but not hyperactive/impulsive traits, predicted switch costs when switching was predictable and working memory load was high. None of the ADHD traits were related to unpredictable switch costs. Study two was designed to: (1) de-confound the role of proactive control and the need to keep track of task order in the predictable task switching paradigm; (2) investigate whether goal neglect, an impairment related to working memory, could explain the relationship between inattention and predictable task switching. Results revealed that neither predictability nor the need to keep track of the task order led to the association between switch costs and inattention, but instead it was the tendency for those high in inattention to neglect preparatory proactive control, especially when reactive control options were available.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S89-S89
Author(s):  
Anita Kwashie ◽  
Yizhou Ma ◽  
Andrew Poppe ◽  
Deanna Barch ◽  
Cameron Carter ◽  
...  

Abstract Background Cognitive control mechanisms enable an individual to regulate, coordinate, and sequence thoughts and actions to obtain desired outcomes. A theory of control specialization posits that proactive control is necessary for anticipatory planning and goal maintenance and recruits sustained lateral prefrontal activity, whereas reactive control, essential for adapting to transient changes, marshals a more extensive brain network (Braver, 2012). Increased task errors and reduced frontoparietal activity in proactive contexts is observed in severe psychopathology, including schizophrenia (Poppe et al., 2016), leading to the prediction that patients rely on reactive control more when performing such tasks. However, evidence of primate prefrontal ‘switch’ neurons, active during both proactive and reactive contexts, challenges the notion that cognitive control relies on discrete processing networks (Blackman et al., 2016). To examine this contradiction, we sought to characterize the distinctiveness between proactive and reactive control in healthy and patient populations using the Dot Pattern Expectancy Task (DPX). We also examined if a bias toward proactive or reactive control predicted behavioral metrics. Methods 44 individuals with schizophrenia (SZ) and 50 matched healthy controls (HC) completed 4 blocks of the DPX during a 3-Tesla fMRI scan (Poppe et al., 2016). Participants followed the ‘A-then-X’ rule, in which they pressed one button whenever an A cue followed an X probe, and pressed a different button for any other non-target stimulus sequence. We examined bilateral frontoparietal ROIs from the literature for evidence of cognitive control specialization as well as whole-brain analyses. Subsequent nonparametric tests and measures of neural response variation strengthened our interpretations. Participant d’-context (dependent on task accuracy) measured their tendency to engage in proactive control. Results Behavioral data revealed that HC participants showed a greater proclivity for proactive control than did their SZ counterparts. HC reaction time outpaced SZ reaction time in trials requiring successful marshalling of proactive control. Preliminary neuroimaging analyses suggest marginal between-group differences in control specialization. HC specialization appeared to be most apparent in diffuse frontal lateral regions, and bilateral posterior parietal cortex. Within the SZ group, specialization was most evident in bilateral posterior parietal cortex. Between-group control specialization differences were most apparent in right hemisphere frontal regions. Superior frontal gyrus and medial temporal lobe activity during proactive processes accounted for modest variance in d’-context. Discussion There were significant between-group differences in goal maintenance behavioral metrics such as reaction time and a tendency to engage in proactive control. Control specialization occurred more diffusely in controls compared to patient counterparts. However, activity in these regions had minimal ability to predict behavioral metrics. Overall, the relatively small size of control-specific areas compared to regions involved in dual processing offers support for the malleable nature of regions implicated in human cognitive control.


2001 ◽  
Vol 24 (5) ◽  
pp. 893-894
Author(s):  
Nachshon Meiran

Like the Theory of Event Coding (TEC), theories of executive functions depict cognition as a flexible and goal-directed system rather than a reflex-like one. Research on task-switching, a dominant paradigm in executive control, has revealed complex and some apparently counterintuitive results. Many of these are readily explained by assuming, like TEC, that cognitive control is based on selecting information from commensurate representations of stimuli and actions.


2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Linda Truong ◽  
Kesaan Kandasamy ◽  
Lixia Yang

The dual mechanisms of control framework (DMC) proposes two modes of cognitive control: proactive and reactive control. In anticipation of an interference event, young adults primarily use a more proactive control mode, whereas older adults tend to use a more reactive one during the event, due to age-related deficits in working memory. The current study aimed to examine the effects of mood induction on cognitive control mode in older (ages 65+) compared to young adults (ages 18–30) with a standard letter-cue (Experiment 1) and a modified face-cue AX-CPT (Experiment 2). Mood induction into negative and/or positive mood versus neutral mood was conducted prior to the cognitive control task. Experiment 1 replicated the typical pattern of proactive control use in young adults and reactive control use in older adults. In Experiment 2, older adults showed comparable proactive control to young adults in their response time (RT). Mood induction showed little effect on cognitive control across the two experiments. These results did not reveal consistent effects of mood (negative or positive) on cognitive control mode in young and older adults, but discovered (or demonstrated) that older adults can engage proactive control when dichotomous face cues (female or male) are used in AX-CPT.


2021 ◽  
Author(s):  
Rongxiang Tang ◽  
Julie Bugg ◽  
Jean-Paul Snijder ◽  
Andrew R. A. Conway ◽  
Todd Samuel Braver

Cognitive control serves a crucial role in human higher mental functions. The Dual Mechanisms of Control (DMC) account provides a unifying theoretical framework that decomposes cognitive control into two qualitatively distinct mechanisms – proactive control and reactive control. While prior behavioral and neuroimaging work has demonstrated the validity of individual tasks in isolating these two mechanisms of control, there has not been a comprehensive, theoretically-guided task battery specifically designed to tap into proactive and reactive control across different domains of cognition. To address this critical limitation and provide useful methodological tools for future investigations, the Dual Mechanisms of Cognitive Control (DMCC) task battery was developed to probe these two control modes, as well as their intra-individual and inter-individual differences, across four prototypical domains of cognition: selective attention, context processing, multi-tasking, and working memory. We present this task battery, along with detailed descriptions of the experimental manipulations used to encourage shifts to proactive or reactive control in each of the four task domains. We rigorously evaluate the group effects of these manipulations in primary indices of proactive and reactive control, establishing the validity of the DMCC task battery in providing dissociable yet convergent measures of the two cognitive control modes.


2021 ◽  
Vol 15 ◽  
Author(s):  
Grace M. Clements ◽  
Daniel C. Bowie ◽  
Mate Gyurkovics ◽  
Kathy A. Low ◽  
Monica Fabiani ◽  
...  

The resting-state human electroencephalogram (EEG) power spectrum is dominated by alpha (8–12 Hz) and theta (4–8 Hz) oscillations, and also includes non-oscillatory broadband activity inversely related to frequency (1/f activity). Gratton proposed that alpha and theta oscillations are both related to cognitive control function, though in a complementary manner. Alpha activity is hypothesized to facilitate the maintenance of representations, such as task sets in preparation for expected task conditions. In contrast, theta activity would facilitate changes in representations, such as the updating of task sets in response to unpredicted task demands. Therefore, theta should be related to reactive control (which may prompt changes in task representations), while alpha may be more relevant to proactive control (which implies the maintenance of current task representations). Less is known about the possible relationship between 1/f activity and cognitive control, which was analyzed here in an exploratory fashion. To investigate these hypothesized relationships, we recorded eyes-open and eyes-closed resting-state EEG from younger and older adults and subsequently tested their performance on a cued flanker task, expected to elicit both proactive and reactive control processes. Results showed that alpha power and 1/f offset were smaller in older than younger adults, whereas theta power did not show age-related reductions. Resting alpha power and 1/f offset were associated with proactive control processes, whereas theta power was related to reactive control as measured by the cued flanker task. All associations were present over and above the effect of age, suggesting that these resting-state EEG correlates could be indicative of trait-like individual differences in cognitive control performance, which may be already evident in younger adults, and are still similarly present in healthy older adults.


2021 ◽  
Author(s):  
◽  
Laura Kranz

<p>According to the Dual Mechanisms of Control (DMC) framework (Braver, 2012) distraction can be controlled either proactively (i.e., before the onset of a distractor) or reactively (i.e., after the onset of a distractor). Research clearly indicates that, when distractors are emotionally neutral, proactive mechanisms are more effective at controlling distraction than reactive mechanisms. However, whether proactive control mechanisms can control irrelevant emotional distractions as effectively as neutral distraction is not known. In the current thesis I examined cognitive control over emotional distraction. In Experiment 1, I tested whether proactive mechanisms can control emotional distraction as effectively as neutral distraction. Participants completed a distraction task. On each trial, they determined whether a centrally presented target letter (embedded amongst a circle of ‘o’s) was an ‘X’ or an ‘N’, while ignoring peripheral distractors (negative, neutral, or positive images). Distractors were presented on either a low proportion (25%) or a high proportion (75%) of trials, to evoke reactive and proactive cognitive control strategies, respectively. Emotional images (both positive and negative) produced more distraction than neutral images in the low distractor frequency (i.e., reactive control) condition. Critically, emotional distraction was almost abolished in the high distractor frequency condition; emotional images were only slightly more distracting than neutral images, suggesting that proactive mechanisms can control emotional distraction almost as effectively as neutral distraction. In Experiment 2, I replicated and extended Experiment 1. ERPs were recorded while participants completed the distraction task. An early index (the early posterior negativity; EPN) and a late index (the late positive potential; LPP) of emotional processing were examined to investigate the mechanisms by which proactive control minimises emotional distraction. The behavioural results of Experiment 2 replicated Experiment 1, providing further support for the hypothesis that proactive mechanisms can control emotional distractions as effectively as neutral distractions. While proactive control was found to eliminate early emotional processing of positive distractors, it paradoxically did not attenuate late emotional processing of positive distractors. On the other hand, proactive control eliminated late emotional processing of negative distractors. However, the early index of emotional processing was not a reliable index of negative distractor processing under either reactive or proactive conditions. Taken together, my findings show that proactive mechanisms can effectively control emotional distraction, but do not clearly establish the mechanisms by which this occurs.</p>


Author(s):  
Matias M Pulopulos ◽  
Jens Allaert ◽  
Marie-Anne Vanderhasselt ◽  
Alvaro Sanchez-Lopez ◽  
Sara De Witte ◽  
...  

Abstract Previous research supports the distinction between proactive and reactive control. Although the dorsolateral prefrontal cortex (DLPFC) has been consistently related to these processes, lateralization of proactive and reactive control is still under debate. We manipulated brain activity to investigate the role of the left and right DLPFC in proactive and reactive cognitive control. Using a single-blind, sham-controlled crossover within-subjects design, 25 young healthy females performed the ‘AX’ Continuous Performance Task after receiving sham vs active high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) to increase left and right DLPFC activity. Reaction times (RTs) and pupillometry were used to assess patterns of proactive and reactive cognitive control and task-related resource allocation, respectively. We observed that, compared to sham, HF-rTMS over the left DLPFC increased proactive control. After right DLPFC HF-rTMS, participants showed slower RTs on AX trials, suggesting more reactive control. However, this latter result was not supported by RTs on BX trials (i.e. the trial that specifically assess reactive control). Pupil measures showed a sustained increase in resource allocation after both active left and right HF-rTMS. Our results with RT data provide evidence on the role of the left DLPFC in proactive control and suggest that the right DLPFC is implicated in reactive control.


Sign in / Sign up

Export Citation Format

Share Document