scholarly journals Integrating liquid chromatography mass spectrometry into an analytical protocol for the identification of organic colorants in Japanese woodblock prints

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marc Vermeulen ◽  
Diego Tamburini ◽  
Emily M. K. Müller ◽  
Silvia A. Centeno ◽  
Elena Basso ◽  
...  

AbstractThree Japanese woodblock prints from the Edo period (1603–1868) underwent a scientific investigation with the aim of understanding the changes in the colorants used in Japanese printing techniques. A multi-analytical approach was adopted, combining non-invasive techniques, such as fiber optic reflectance spectroscopy (FORS), Raman spectroscopy, multispectral imaging (MSI), and macro X-ray fluorescence (MA-XRF) with minimally invasive surface-enhanced Raman spectroscopy (SERS). The results enabled many of the pigments to be identified and their distribution to be studied, apart from two shades of purple of organic composition. Consequently, the potential of high-pressure liquid chromatography tandem mass spectrometry (HPLC–MS/MS) was explored for the first time with application to Japanese woodblock prints. The intrinsic sensitivity of the instrument and an effective extraction protocol allowed us to identify a mixture of dayflower (Commelina communis) blue and safflower (Carthamus tinctorius) red in purple samples constituted of 2–3 single fibers. In addition to the innovative integration of MA-XRF and HPLC–MS/MS to investigate these delicate artworks, the study concluded on the use of traditional sources of colors alongside newly introduced pigments in late Edo-period Japan. This information is extremely important for understanding the printing practices, as well as for making decisions about display, conservation, and preservation of such artworks.

2020 ◽  
Vol 59 (9) ◽  
pp. 3439-3443 ◽  
Author(s):  
Lifu Xiao ◽  
Chuanqi Wang ◽  
Chen Dai ◽  
Laurie E. Littlepage ◽  
Jun Li ◽  
...  

The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3630-3635 ◽  
Author(s):  
Anh Nguyen ◽  
Zachary D. Schultz

Sheath-flow surface-enhanced Raman spectroscopy (SERS) was used for online detection and quantification of small molecules separated by liquid chromatography.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Marc Vermeulen ◽  
Marco Leona

Abstract This study explores the evolution of the manufacturing process of artificial arsenic sulfide pigments in Edo-period Japan through the analysis of three impressions of the same print dated from the 1830s and attributed to Katsushika Hokusai (1760–1849), and one from 1852 and attributed to Utagawa Kunisada (1786–1865). Colorants in the yellow and green areas of the four prints were investigated by means of non-invasive and microanalytical techniques such as optical microscopy, fiber optic reflectance spectroscopy and Raman spectroscopy. While the pigments in the green and yellow areas are similar throughout the set of prints—Prussian blue, indigo (for the Hokusai prints) and orpiment were identified—optical microscopy and Raman spectroscopy highlighted some variations in the orpiment used in the green areas of the prints. Two of the Hokusai prints present bright yellow particles of larger size and lamellar morphology, identified by Raman spectroscopy as natural orpiment. The third print presents an admixture of bright yellow natural orpiment particles with a smaller number of orange-yellow particles shown by Raman to be partially amorphous arsenic sulfide. Small bright yellow particles identified as fully amorphous arsenic sulfide pigments by Raman were found throughout the green areas of the Kunisada print. Although supported by Japanese historical sources, local production of artificial arsenic sulfide in the early nineteenth century was not previously documented. The simultaneous presence of both crystalline and amorphous domains in a single pigment particle in some of the Hokusai prints suggests that natural orpiment was used as primary source of arsenic for the production of a low grade artificial pigment. The pigment found in the Kunisada print, by contrast, was obtained from arsenic oxide (or arsenolite) and sulfur though a dry-process synthesis, as shown by the sulfur excess, signs of heat treatments and fully amorphous nature of the pigment. These findings set the earliest dates for both the ore sublimation process and the arsenolite dry process, and are of foremost importance to understand the evolution of the amorphous arsenic sulfide production in Edo-period Japan and its introduction in the palette of Japanese woodblock prints.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun-Fa Liang ◽  
Cheng Peng ◽  
Peiyu Li ◽  
Qiu-Xiong Ye ◽  
Yu Wang ◽  
...  

Antibiotics, as veterinary drugs, have made extremely important contributions to disease prevention and treatment in the animal breeding industry. However, the accumulation of antibiotics in animal food due to their overuse during animal feeding is a frequent occurrence, which in turn would cause serious harm to public health when they are consumed by humans. Antibiotic residues in food have become one of the central issues in global food safety. As a safety measure, rapid and effective analytical approaches for detecting these residues must be implemented to prevent contaminated products from reaching the consumers. Traditional analytical methods, such as liquid chromatography, liquid chromatography mass spectrometry, and capillary electrophoresis, involve time-consuming sample preparation and complicated operation and require expensive instrumentation. By comparison, surface-enhanced Raman spectroscopy (SERS) has excellent sensitivity and remarkably enhanced target recognition. Thus, SERS has become a promising alternative analytical method for detecting antibiotic residues, as it can provide an ultrasensitive fingerprint spectrum for the rapid and noninvasive detection of trace analytes. In this study, we comprehensively review the recent progress and advances that have been achieved in the use of SERS in antibiotic residue detection. We introduce and discuss the basic principles of SERS. We then present the prospects and challenges in the use of SERS in the detection of antibiotics in food. Finally, we summarize and discuss the current problems and future trends in the detection of antibiotics in food.


Sign in / Sign up

Export Citation Format

Share Document