scholarly journals Monte Carlo approach to risks assessment of heavy metals at automobile spare part and recycling market in Ilorin, Nigeria

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muyiwa Michael Orosun ◽  
Abayomi Daniel Adewuyi ◽  
Naheem Banji Salawu ◽  
Matthew Omoniyi Isinkaye ◽  
Olugbenga Rapheal Orosun ◽  
...  

AbstractThis study evaluates the sources and health risks associated with heavy metals in Ipata spare part market in Ilorin, Nigeria. Soil and water samples were collected within and outside the market for heavy metal (As, Pb, Mg, Mn, Cd, Cr, Cu, Zn, Fe and Ag) analysis using Atomic Absorption Spectrometry. The results indicate that all the heavy metals analyzed show higher concentration within the recycling market than the control location. The concentration of heavy metals at the market decreases with an increasing depth between 0 and 50 cm and appears to be stable below 50 cm of the soil depth. All the Hazard Indices (HI) estimated for the soil samples are less than one (< 1) which is the standard set by USEPA, whereas, the Hazard Index (HI) for the water samples within the station is greater than 1. The Incremental Lifetime Cancer Risk (ILCR) for soil samples ranged from level I to level V, while that of water samples ranged from level VI to Level VII based on Delphii method of classification. This shows that the main lifetime cancer risk occurs through the water exposure pathway. Similarly, according to the mean, P5% and P95% cumulative probability using the Monte Carlo simulation, the ILCR is above the acceptable range of 1.00E−6 and 1.00E−4. All the pollution indices reveal that the significant pollution at the park is more of anthropogenic than pedogenic and lithogenic. Therefore, the market is contributing immensely to environmental pollution which may lead to unforeseen danger to human health.

2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Saheed Adekunle Ganiyu ◽  
Abimbola Temitope Oyadeyi ◽  
Azeem Adedeji Adeyemi

AbstractThis study has been conducted to appraise the concentrations of selected heavy metals and total dissolved solids (TDSs) in the drinking water from shallow wells in parts of Ibadan metropolis, southwest Nigeria. Fifteen (15) water samples were collected from three representative residential locations [traditional core area (TCA), peri-urban area (PUA), and urban area (UA)] for geochemical analysis. Heavy metals and TDS were analyzed with the aid of atomic absorption spectrophotometer and calibrated meter, respectively. The mean concentration (mg/L) of Zn, Pb Mn, Fe, and Cd has been 3.930, 0.658, 0.0304, 1.698, and 0.501, respectively, and as a consequence, the order of abundance of studied metals was Zn > Fe > Pb > Cd > Mn. Concentrations of Zn, Fe, Pb, and Cd were higher than recommended standards in 60%, 86.7%, 100%, and 100% of groundwater samples, respectively. However, at all points tested, the mean concentrations of Mn and TDS in water samples lie within the safe limits set by World Health Organization. The evaluation of geoaccumulation index (Igeo), enrichment factor (EF), and contamination factor suggests that representative water samples were low-to-moderate contamination. The potential ecological risk index advocates low-to-moderate ecological risk in TCA and PUA, while it demonstrated exclusive “moderate” risk in UA. Further, the range of pollution load index (PLI) (0.55–1.32) in both TCA and PUA shows nil-to-moderate pollution status, while PLI values > 1 in UA indicate moderate contaminated state. The degree of contamination in groundwater showed the following trends: UA > TCA > PUA in the study area. Moreover, the results of EF and quantification of contamination of analyzed metals in water samples indicate geogenic and anthropogenic inputs. The contribution of studied metals to the incidence of non-cancer risk via oral intake within the residential sites follows the order: cadmium > lead > zinc > iron > manganese. The hazard index as a result of ingested heavy metals for the three population classes surpasses the acceptable range in the order of infant < child < adult. Cadmium and lead made considerable impact to the estimation of cancer risk in the study area for the three human population categories. Factor analysis extracted only one component that explained 94.64% of the entire variance, while cluster analysis identified three distinct groups based on similar water quality characteristics. Based on the findings of the study, awareness programs toward protecting the shallow groundwater sources should be launched, encouraged, and sustained. Moreover, the study suggests better hygienic practices and pre-treatment of contaminated water before consumption.


2020 ◽  
Vol 4 (3) ◽  
pp. 256-262
Author(s):  
Y. I. Yakubu ◽  
I. A. Yola

This research investigated the environmental effect of local production methods of aluminium utensils in Bachirawa, Ungogo local government Kano. Three soil samples and two samples of water were collected from sites A, B,C, D and E. The samples were then taken to faculty of agriculture for analysis. Atomic absorption spectrophotometer (A A S model No 240 FSAA) was used to determine the concentration levels of heavy metals in the samples. The results show that, the concentration levels of  heavy metals in the soil samples A, B and C are:  Zn ranges between  (1158.13 - 11,117.80)  mg/kg; Mn  between  (285.719 – 1809.672) mg/kg; Cd between (0.026 – 0.540) mg/kg; Cr (0.498 – 0.832) mg/kg and Pb between (42.54 - 285.53) mg/kg. The observed concentration levels in water samples for Zn ranges between (0.2411 – 0.4435)mg/l; Cd between (0.091 – 0.123) mg/l; Cr between (0.015 – 0.022) mg/l; Mn between (0.284 – 0.728) mg/l and Pb between (0.00-0.08) mg/l. Zinc and Manganese have higher concentration levels than the recommended  permissible limit set by European Union (EU) and  United Kingdom(UK)  while Cd, Cr and  Pb have lower concentration levels than the recommended permissible limit set by EU and UK in soil samples  A, B and C. The concentration levels of Mn, Cd and Pb in water samples were higher than the permissible limit set by World Healh Organization (WHO) whereas Zn and Cr have concentrations lower than the recommended permissible limit set by 


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Mustafa Jamal Akbar ◽  
Omer Sabah Al-Tamimi

The current research aimed to assess contamination levels in the soil of study area by heavy metals. Eight sites were selected for the collection of soil samples. The eight heavy metals namely As, Pb, Cd, Cr, Co, Cu, Ni, and Zn were analyzed in each soil samples by using ICP-MS technology. The measured concentrations of heavy metals were compared with Geochemical Background values, EPA Sediment Quality Guidelines, Ecological Screening values, and WHO Guidelines. The spatial distribution maps of ecological indices were performed using ArcGIS software (version 10.2), which provides an idea of the geographical distribution of heavy metals contamination levels in the soil of Shewasoor sub-basin. The soil contamination by heavy metals assessed using Potential Ecological Risk Index (RI), Nemerow Pollution Index (P_N), Hazard Index (HI), and Cancer Risk. The RI showed there are high risk of heavy metals in soil and according to P_N the soil has been moderate to severely contaminated by heavy metals. The hazard index of all soil samples was within acceptable range for adults and showed unacceptable risk for children. While the total cancer risk values of As and Cr were within acceptable limits, whereas of Pb, Cd, Co, and Ni were lower than acceptable risk range at all sites for adults and children. Ecological indices which are used to assess the contamination levels in the soil by heavy metals refers to the soil of study area was contaminated moderate to heavily by heavy metals, this attributed to the natural and anthropogenic pollution sources around and within the study area.


Author(s):  
Mansour A. Alghamdi ◽  
Salwa K. Hassan ◽  
Noura A. Alzahrani ◽  
Fahd M. Almehmadi ◽  
Mamdouh I. Khoder

Classrooms Air Conditioner Filter (CACF) particles represent all of the exposed particles that have migrated to the interior environment. This study was conducted to assess the heavy metals contamination in CACF particles from Jeddah primary schools located in urban, suburban and residential areas; and to evaluate their health risks of children exposure (non-carcinogenic and carcinogenic). Heavy metals levels in CACF particles of schools were in the following order: urban schools > suburban schools > residential schools. Fe, Mn and Zn were the dominant species. Geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) values indicated that the contamination levels was in the following order Cd > Pb > Zn > As > Cu > Ni > Mn > Cr > Co >V > Fe. School CACF particles was moderately contaminated with As and Zn and moderately to heavily contaminated with Pb and Cd. Enrichment factors (EFs) indicated that Zn, Cd, Pb, As and Cu in CACF particles were severe enriched. The hazard quotient (HQs) and hazards index (HI) values for heavy metals were lower than the acceptable level of one. As, Pb, Cr and Mn were exhibited high non-cancer effects for children. The lifetime cancer risk (LCR) and total lifetime cancer risk (TLCR), HQs and HI values for the different exposure pathways of heavy metals decreased in the following order: ingestion > dermal contact > inhalation. Carcinogenic and non-carcinogenic risk rank order of schools were urban schools > suburban schools > residential schools. The LCR and TLCR of heavy metals was in the following order: Co > Ni >Cr > Cd > As > Pb. The ingestion lifetime cancer risk (LCRing) and TLCR values from exposure to Ni and Cr in urban and suburban schools, Cd in urban schools, and Co in all Jeddah schools only exceed the acceptable range (1 × 10−6–1 × 10−4) Only LCRing and TLCR values from exposure to ∑ carcinogens exceed the acceptable level.


Author(s):  
I. B. Lawan ◽  
M. C. Zynab ◽  
I. M. Addullahi ◽  
M. Zakari ◽  
C. A. Joseph

Grain (soya beans, sorghum and maize) samples from Shani and Kwayakusar Local Government Areas, Borno State, Nigeria were collected in agricultural locations for the determination of heavy metals. The levels of heavy metals were determined using Atomic Absorption Spectroscopy (AA–6800 SHIMADZU). The levels of all the heavy metals studied in all the agricultural locations were higher in the post-harvest grains than in the pre-harvest grains. Results from the Incremental Lifetime Cancer Risk (ILCR) showed that, there was the possibility of developing cancer related diseases from the consumption of cereal samples from the study area with respect to the 10-4 tolerable limit. The results further suggested that the source of these heavy metals content in the grains samples might be largely as a result of the application of agrochemicals. Hence, consumption of the study cereals from the study area is of health risk with respect to Pb, Cd and As and should be given higher priority by relevant agencies.


2018 ◽  
Vol 13 (3) ◽  
pp. 360-373
Author(s):  
FATIMAH OYENIKE OJO ◽  
TUKURA BITRUS WOKHE ◽  
MADU PASCAL CHIMA

Seasonal concentrations of eight total and bioavailable heavy metals (Cr, Cu, Cd, Zn, Mn, Ni, Pb an Fe), along with some physico chemical properties of soil in vegetable farms around the rock quarry in Durumi, Abuja was assessed to know the level of heavy metal pollution of the soil. Control and actual soil samples were collected from depths of 0.0 -5.0cm and 5.0 - 10.0cm during dry and rainy seasons. Heavy metal concentrations varied inconsistently in samples and control. Dry season levels of Zn(5.20mg/kg), Mn(19.44mg/kg), Ni(1.69mg/kg) and Pb(4.56mg/kg) and rainy season levels of Zn (0.26mg/kg), Pb(22.53mg/kg) at soil depth of 0.0 - 5.0cm, and dry season levels of Zn(1.19mgkg) and Ni(1.62mg/kg) along with rainy season levels of Cr (0.44mg/kg), Cd (0.06mg/kg), Zn(0.09mg/kg) and Fe(6.74mg/kg) at soil depth of 5.0 -10.0cm were all higher in samples than controls. However, seasonal mean total heavy metals in the soil samples were lower than the Maximum Allowable Limits (mg/Kg) for World Health Organization (WHO) and Food and Agriculture Organization (FAO). During dry season, heavy metals that indicated anthropogenic content, had anthropogenic levels that ranged in the order: Cd(16.67%) < Cu(54.17%)


2021 ◽  
Vol 14 (3) ◽  
pp. 267-274

Abstract: The activity concentrations of natural radionuclides of the elements (40K, 238U and 232Th), collected from Kutha district of Babylon governorate are studied and evaluated. Twenty soil samples with (0-15) cm in depth are collected. Gamma spectrometer NaI (TI) source is used for calibration. The radioactivities of natural isotopes K-40, U-238 and Th-232, were assessed. These studies show that radio activities of isotopes are acceptable according to the standard levels. Also, the activity of radium equivalent, the rate of annual effective dose, average air volume and external risk index are evaluated. The results are found within the internationally tolerable values. The results show that the mean of the radioactivity of 238U is (19.1565)Bq / kg, while it is (54.501) Bq/kg for 232Th and (179.578) Bq/kg for 40K. The study results showed that the average of radiological effects, like the Radium equivalent (Raeq), the rate of absorbed dose (Dr), the index of external hazard (Hex), the index of internal hazard (Hin), the index of representative gamma hazard (Iγ), the Annual Effective Dose Equivalent (AEDE) and the Excess Lifetime Cancer Risk (ELCR) are as follow: 110.920 Bq/kg, 50.1838 nGy/h, 0.29953, 59.1530, 27.996, 0.34 mSv/y and 1.268x10-3, respectively. Keywords: Natural radioactivity, Absorption, External hazard, Effective annual dose, Excess lifetime cancer risk.


Author(s):  
Tekleweini Gereslassie ◽  
Ababo Workineh ◽  
Xiaoning Liu ◽  
Xue Yan ◽  
Jun Wang

Polycyclic aromatic hydrocarbons are large groups of ubiquitous environmental pollutants composed of two or more fused aromatic rings. This study was designed to evaluate the distribution, potential sources, and ecological and cancer risks of eleven polycyclic aromatic hydrocarbons from Huangpi soils in Wuhan, central China. The soil samples for this study were taken from 0–10 cm and 10–20 cm soil depths. A modified matrix solid-phase dispersion extraction method was applied to extract analytes from the soil samples. A gas chromatograph equipped with a flame ionization detector was used to determine the concentrations of the compounds. The sum mean concentrations of the polycyclic aromatic hydrocarbons were 138.93 and 154.99 µg kg−1 in the 0–10 cm and 10–20 cm soil depths, respectively. Benzo[a]pyrene and fluorene were the most abundant compounds in the 0–10 cm and 10–20 cm soil depths, respectively. The quantitative values of the pyrogenic index, total index, and diagnostic ratio used in this study showed that the polycyclic aromatic hydrocarbons have a pyrogenic origin. The negligible and maximum permissible concentrations values for naphthalene, acenaphthylene, acenaphthene, phenanthrene, anthracene, pyrene, benz[a]anthracene, and benzo[a]pyrene indicated a moderate ecological risk. The incremental lifetime cancer risk values for adults and children showed a low and moderate cancer risk, respectively.


Author(s):  
Mebom Princess Chibuike ◽  
N. David Ogbonna ◽  
Williams Janet Olufunmilayo

Wetland soils constitute vast, under-exploited and sometimes undiscovered ecologies in many countries of the World, including Nigeria. A total of 54 wetland soil samples including surface and subsurface soil at depths of 0-15 cm and 15-30 cm were collected using a sterile hand auger for a period of three months between August and October and subjected to standard and analytical microbiological procedures. The wetland soil samples were further subjected to atomic absorption spectroscopy (AAS) to check for presence and concentration of heavy metals. Results obtained showed that apart from heterotrophic bacterial and fungal counts, hydrocarbon utilizing bacteria (HUB) counts were higher in the surface soil ranging from 12.06±3.43bX107 cfu/g at Iwofe to 6.19±2.67aX107 cfu/g at Chokocho while subsurface soil had HUB ranging from 8.91±6.67aX103 cfu/g at Eagle Island to 4.93±3.95aX103cfu/g at Chokocho. Heavy metals such as Fe, Pb, Cd and Ni were recorded in concentrations above FEPA permissible limit in the surface and subsurface soil across the three wetlands. The heavy metal concentration in each wetland however, decreased with an increase in soil depth. According to literatures, elevated levels of heavy metals in soils decrease microbial population, diversity and activities. However, the microbial population in this study increased with increasing heavy metal concentration which indicates that the microbes can tolerate or utilize heavy metals in their systems; as such can be used for bioremediation of heavy metal polluted soils. 


Sign in / Sign up

Export Citation Format

Share Document