scholarly journals Assessment of heavy metals contamination and associated risks in shallow groundwater sources from three different residential areas within Ibadan metropolis, southwest Nigeria

2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Saheed Adekunle Ganiyu ◽  
Abimbola Temitope Oyadeyi ◽  
Azeem Adedeji Adeyemi

AbstractThis study has been conducted to appraise the concentrations of selected heavy metals and total dissolved solids (TDSs) in the drinking water from shallow wells in parts of Ibadan metropolis, southwest Nigeria. Fifteen (15) water samples were collected from three representative residential locations [traditional core area (TCA), peri-urban area (PUA), and urban area (UA)] for geochemical analysis. Heavy metals and TDS were analyzed with the aid of atomic absorption spectrophotometer and calibrated meter, respectively. The mean concentration (mg/L) of Zn, Pb Mn, Fe, and Cd has been 3.930, 0.658, 0.0304, 1.698, and 0.501, respectively, and as a consequence, the order of abundance of studied metals was Zn > Fe > Pb > Cd > Mn. Concentrations of Zn, Fe, Pb, and Cd were higher than recommended standards in 60%, 86.7%, 100%, and 100% of groundwater samples, respectively. However, at all points tested, the mean concentrations of Mn and TDS in water samples lie within the safe limits set by World Health Organization. The evaluation of geoaccumulation index (Igeo), enrichment factor (EF), and contamination factor suggests that representative water samples were low-to-moderate contamination. The potential ecological risk index advocates low-to-moderate ecological risk in TCA and PUA, while it demonstrated exclusive “moderate” risk in UA. Further, the range of pollution load index (PLI) (0.55–1.32) in both TCA and PUA shows nil-to-moderate pollution status, while PLI values > 1 in UA indicate moderate contaminated state. The degree of contamination in groundwater showed the following trends: UA > TCA > PUA in the study area. Moreover, the results of EF and quantification of contamination of analyzed metals in water samples indicate geogenic and anthropogenic inputs. The contribution of studied metals to the incidence of non-cancer risk via oral intake within the residential sites follows the order: cadmium > lead > zinc > iron > manganese. The hazard index as a result of ingested heavy metals for the three population classes surpasses the acceptable range in the order of infant < child < adult. Cadmium and lead made considerable impact to the estimation of cancer risk in the study area for the three human population categories. Factor analysis extracted only one component that explained 94.64% of the entire variance, while cluster analysis identified three distinct groups based on similar water quality characteristics. Based on the findings of the study, awareness programs toward protecting the shallow groundwater sources should be launched, encouraged, and sustained. Moreover, the study suggests better hygienic practices and pre-treatment of contaminated water before consumption.

2021 ◽  
Vol 9 (2) ◽  
pp. 025-035
Author(s):  
Edori ES ◽  
Iyama WA ◽  
Edori OS

Soil samples were collected at a depth of 0-30cm within two steel markets and a control site in Port Harcourt, Rivers State Nigeria to assess the level of heavy metals (Fe, Pb, Cu, Cd, Cr, Ni and As) in the environment. Atomic Adsorption Spectrophotometer was used to analyze the samples for heavy metals. The concentrations of all the heavy metals in the steel rods markets exceeded that of the control. The results indicated that heavy metals concentrations in the sites were in the order; Mile III > Kala > RSU. The average levels of contamination of heavy metals recorded followed the order Fe > Cr > Cu > Pb > Ni > As > Cd in Mile III, Fe > Pb > Cu > Cr > Ni > As > Cd in Kala and Fe > Cu > Pb > Cr > Ni > As > Cd in RSU (control). Mean concentrations obtained for heavy metals within the months of investigation were; 1420.931±9.155, 7.753±0.184, 8.730±0.050, 2.843±0.124, 9.428±0.122, 7.433±0.047 and 3.732±0.047 mg/Kg for Fe, Pb, Cu, Cd, Cr, Ni and As respectively at the mile III station, while the mean concentrations of heavy metals observed at the Kala station were; 1161.173±1.823, 9.425±0.054, 7.596±0.027, 1.425±0.020, 6.507±0.006, 5.455±0.033 and 1.901±0.010 mg/Kg for Fe, Pb, Cu, Cd, Cr, Ni and As respectively. The mean values of heavy metals concentrations observed at the RSU station within the period were; 892.064±1.025,5.603±0.007, 5.841±0.051, 0.173±0.005, 3.389±0.009, 2.309±0.010 and 0.706±0.006 mg/Kg for Fe, Pb, Cu, Cd, Cr, Ni and As respectively. Pollution assessment models used for assessing the anthropogenic input on the quality of the soil in the area using the control site as the basis of judgment were: contamination factor (CF), pollution load index (PLI), contamination degree (CD), modified contamination degree (mCD), potential ecological risk coefficient (Eir), potential ecological risk index (RI), Geo-accumulation index (Igeo) and anthropogenicity. These indices revealed that the steel markets were contaminated and polluted and poses ecological risks by heavy metals, even though the values obtained were still below the WHO acceptable limits. The steel rods markets need to be adequately monitored and regulated to avoid further soil contamination by heavy metals to a degree that will be dangerous to human health.


2020 ◽  
Vol 10 (20) ◽  
pp. 7078 ◽  
Author(s):  
Amit Kumar ◽  
Marina Cabral-Pinto ◽  
Amit Kumar ◽  
Munesh Kumar ◽  
Pedro A. Dinis

In the modern era, due to the rapid increase in urbanization and industrialization in the vicinity of the Himalayas, heavy metals contamination in soil has become a key priority for researchers working globally; however, evaluation of the human and ecological risks mainly in hilly areas remains limited. In this study, we analyzed indices like the contamination factor (CF), degree of contamination (DC), enrichment factor (EF), geochemical index (Igeo), pollution ecological risk index (PERI), and pollution load index (PLI), along with cancer risk (CR) and hazard indices (HI), to ascertain the eco-environmental and human risks of using heavy metals in datasets collected from 168 sampling locations in Uttarakhand, India. The evaluation calculated of Igeo, EF, and CF suggests that represented soil samples were moderately contaminated and highly augmented with Rb, while PERI (75.56) advocates a low ecological risk. Further, PLI and DC (PLI: 1.26; DC: 36.66) show a possible health risk for the native population in the vicinity of the studied catchment. The hazard index (HI) is estimated greater than 1 (HI > 1) for Cr and Mn, representing a possible risk for cancer. However, adults are free from cancer risk, and other studied elements have been reported as noncarcinogenic. This assessment gives important information to policymakers, environmentalists, and foresters for taking mitigation measures in advance to mitigate the potential future risk of soil pollution on humans, ecology, and the environment.


2021 ◽  
Author(s):  
Aylin Apaydın ◽  
Hatice Kabaoğlu ◽  
Gökhan Apaydın ◽  
Murat Şirin ◽  
Erhan Cengiz ◽  
...  

Abstract In the present study, the concentration levels of heavy metals such as Mn, Fe, Ni, Cu, Zn, Cr and Pb in sediment samples collected from 16 sampling locations in the Middle and Eastern Black Sea regions, Turkey was measured using energy dispersive X–ray fluorescence spectroscopy (EDXRF). Various pollution parameters and methods, such as the enrichment factor (EF), geo–accumulation index (Igeo), contamination factor (CF), pollution load index (PLI), ecological risk index (RI), and geo–spatial distribution patterns were used to assess in detail the pollution status, ecological risks and sources of metals in sediment. The mean concentrations of Mn, Fe, Ni, Cu, Zn, Cr and Pb were found to be 565.38, 46,000, 34.38, 104.06, 109.88, 87.31, and 32.31 mg/kg, respectively. Results showed that the mean concentrations of Cu, Zn and Pb exceeded the crustal shale value, with the exception of Mn, Fe, Ni and Cr. According to the calculated pollution parameters, although minimal or moderate pollution was detected in the area investigated, it was determined that there was a very low ecological risk. Multivariate statistical analysis results showed that Cu, Zn, and Pb levels in the investigated region were slightly influenced by anthropogenic inputs such as mining and agricultural practices. In addition, the geo–spatial distributions of Cu, Zn, Fe and Pb were found to be higher in this region due to the mining activities carried out in the Eastern Black Sea region.


The study assessed the ecological risk and polluting load of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in surface soils within Bori Urban. The composite soil samples collected from different locations were prepared and atomic absorption spectrophotometer (AAS) was used for the analysis of the heavy metals. From the results of the analysis, the mean concentrations (mg/kg) of the heavy metals decreased in the order Cu (37.42) > Ni (34.06) > Cr (28.66) > Zn (7.75) >Pb (2.03) > Cd (0.89). The mean concentrations of Cd, Cu, and Ni were above USEPA soil guidelines and world unpolluted soil average, while those of Pb and Zn were below. The mean concentrations of the heavy metals from the study locations were all above that of the control location. The findings indicated that the urban soils of the study were loaded with heavy metals due to anthropogenic activities. The anthropogenic percentage input was in the range of 63.92 - 89.13 above 50% indicating anthropogenic origin of the heavy metals in soils of the study area. The results of ecological risk index (Er) indicated that Cd with Er (467.40) contributed up to 94.51% to the potential ecological risk index (RI) while Zn (0.78) contributed 0.16%. The heavy metals under study posed highly strongly potential ecological risk with RI value of 494.56 to the Bori urban soil due to anthropogenic activities. The ANOVA result of FCal 6.42 > [F(5.30) = 2.53, P< 0.05)] revealed significant differences between the soil sample mean values due to different anthropogenic pollution sources with different loads of heavy metals as pollutants. The Omega Squared (w2) value of 0.52 > 0.14 showed very strong interactive relationship among the heavy metals to bring about high level of ecological potential risk of the urban soils in the study area. Based on the findings, the surface soils have elevated load of heavy metals thereby posing ecological potential risk to Bori urban soils. Therefore, there should be periodic monitoring and environmental audit by relevant authorities to ensure good soil quality of Bori urban soil. Keywords: Potential ecological risk, pollution load, Bori Urban, Anthropogenic Percentage input, contamination Factor.


2021 ◽  
pp. 1077-1087
Author(s):  
Lina F.D. AL-Heety ◽  
Omer M. Hasan ◽  
Emad A. Mohammed Salih Al-Heety

     This study aims to evaluate the concentration of the heavy metals (Co, Cd, Cr, Cu, Ni, Pb, and Zn) and their ecological risk in soils adjacent to the power generators of Ramadi city, Iraq. The soil samples were collected from a depth of 20cm. The obtained results showed that the mean concentrations of heavy metals (HMs) are ranked as in the following order: Cr (360.90mg/kg) > Ni (283.65mg/kg) > Zn (190.96mg/kg) > Pb (130.75 mg/kg) > Cu (36.54 mg/kg) > Co (16.62 mg/kg) > Cd (2.55 mg/kg). The mean values of HMs concentration exceed the international guidelines. The result of correlation matrix analysis at P £ 0.05 showed significant correlations between the concentrations of HMs. These correlations are interpreted in the context of a common source of pollution and/or common origin. Results of the potential ecological risk factor assessment of metal i (Eir) in soil adjacent to the power generators  of Ramadi city showed that the Eir values take the following descending order: Ni (354.56, very severe) > Cd (255.31, severe) , Co (207.77, severe) > Zn (88.69, heavy) > Cu (25.73, light) > Cr (17.43, light) > Pb (12.0, light). The potential ecological risk index (RI) values are classified as severe ecological risk for all studied heavy metals. This study provides the environmental protection managers and decision-makers with important information about the risk of using electrical generators in residential neighborhoods.


Author(s):  
Osikemekha Anthony Anania ◽  
John Ovie Olomukoro ◽  
Alex Ajeh Enuneku

The objectives of this study are to assess the trace and heavy metals pollution in the sediments of Ossiomo river, using geospatial mapping, environmetrics and ecological risk indices. The results from the descriptive statistics showed that there was significant difference (P<0.05) of the mean values of Fe, Mn, Cu, Cr, Cd, Pb, Ni and V. A posterior analysis using Duncan multiple regression analysis showed that stations 2 and 3 were significantly different from stations 1 and 4. While, there was no significant difference (P>0.05) in the mean values of Zn across the stations. The results of the relationship of the metals revealed a negative correlation between Fe and Mn with the other metals correspondingly. The results of the Kriging interpolation indicated a strong bull eye colour for stations 2 and 3 (6.42), while stations 1 and 4 were minimal (1.4). The results of the geospatial mapping indicated Fe, Zn and Mn to be the most dominant metals across the stations. The results of the PCA (principal component analysis) yielded 16 variables under 9 components with Eigenvalues >1 in components 1- 6 and these variables explained 99.99 % of the total variance in the sediment. The results of the degree of suitability and sphericity of the PCA revealed a high significant difference at P<0.001. The results of the potential ecological risk index values were very high in station 2 (824.30) and 3 (802.11) correspondingly. That of index of geo-accumulation was generally low (< 2). The findings from this study generally revealed the source apportionment of the trace and heavy metals to come from anthropogenic influences such as farming; fertilizers. Sustainable agriculture is highly recommended in order to reduce the impacts of anthropogenic activities, deterioration of the ecosystem and possible death of the life forms in this watercourse.  


2021 ◽  
Author(s):  
Tolesa Tesfaye ◽  
Haregot Tesfau ◽  
Adigi Balcha ◽  
Muktar Hassen

Abstract Background: This study was conducted to investigate the contamination level of Abzana water in Asano district. A total of five water samples were collected from different point of Abzana water. Some parameters of water were analyzed like temperature, pH, electrical conductance and total dissolved solids (TDS) and four heavy metal (Cd, Pb, Cr, and Mn) concentration using standard procedures and the results were compared with WHO guideline values. Result: The results of the present study have shown the temperatures of all sampling station range between 18.9 and 19.2°c. The pH was found to be of range from 6.54 to 7.11 whereas, the electrical conductance was 174.5 to 206(µS/cm). In addition, the lowest value of TDS was 131.4 and the highest was 140.1 ppm. In contrast, heavy metals (Pb, Cd, Cr and Mn) were analyzed and compared with standards of drinking water. The results indicate that the mean concentration of Cd (0.00664mg/l) exceeded the standards, although the mean concentration of Mn, Pb and Cr were found within the standard limit at 0.076082, 0.00810 and 0.035442 mg/l respectively. Conclusion: The concentrations of the investigated metal (Cr, Pb and Mn) and all physico-chemical result of Abzana water from Asano kebele were found below the guidelines for drinking water given by the World Health Organization. But the concentration of Cd in Abzana water sample was found above the permissible limit of WHO standards. Therefore, it was not safe for drinking and health effect according metals what we have studied here.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dongping Liu ◽  
Jian Wang ◽  
Huibin Yu ◽  
Hongjie Gao ◽  
Weining Xu

Abstract Background Heavy metal pollution of aquatic systems is a global issue that has received considerable attention. Canonical correlation analysis (CCA), principal component analysis (PCA), and potential ecological risk index (PERI) have been applied to heavy metal data to trace potential factors, identify regional differences, and evaluate ecological risks. Sediment cores of 200 cm in depth were taken using a drilling platform at 10 sampling sites along the Xihe River, an urban river located in western Shenyang City, China. Then they were divided into 10 layers (20 cm each layer). The concentrations of the As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were measured for each layer. Eight heavy metals, namely Pb, Zn, As, Cd, Cr, Cu, Ni, and Hg, were measured for each layer in this study. Results The average concentrations of the As, Cd, Cu, Hg, and Zn were significantly higher than their background values in soils in the region, and mainly gathered at 0–120 cm in depth in the upstream, 0–60 cm in the midstream, and 0–20 cm downstream. This indicated that these heavy metals were derived from the upstream areas where a large quantity of effluents from the wastewater treatment plants enter the river. Ni, Pb, and Cr were close or slightly higher than their background values. The decreasing order of the average concentration of Cd was upstream > midstream > downstream, so were Cr, Cu, Ni and Zn. The highest concentration of As was midstream, followed by upstream and then downstream, which was different to Cd. The potential factors of heavy metal pollution were Cd, Cu, Hg, Zn, and As, especially Cd and Hg with the high ecological risks. The ecological risk levels of all heavy metals were much higher in the upstream than the midstream and downstream. Conclusions Industrial discharge was the dominant source for eight heavy metals in the surveyed area, and rural domestic sewage has a stronger influence on the Hg pollution than industrial pollutants. These findings indicate that effective management strategies for sewage discharge should be developed to protect the environmental quality of urban rivers.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1801
Author(s):  
Valentina Andreea Calmuc ◽  
Madalina Calmuc ◽  
Maxim Arseni ◽  
Catalina Maria Topa ◽  
Mihaela Timofti ◽  
...  

It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 891
Author(s):  
Qian Zhang ◽  
Guilin Han ◽  
Xingliang Xu

Human agricultural activities have resulted in widespread land degradation and soil contamination in the karst areas. However, the effects of reforestation after agricultural abandonment on the mobility risks and contamination of heavy metals have been rarely reported. In the present study, six soil profiles were selected from cropland and abandoned cropland with reforestation in the Puding karst regions of Southwest China. The Community Bureau of Reference (BCR) sequential extraction method was used to evaluate the compositions of different chemical fractions of soil heavy metals, including Fe, Mn, Cr, Zn, Ni, and Cd. The total contents of Cr, Ni, Zn, Cd, and Mn in the croplands were significantly higher than those in the abandoned croplands. For all soils, Cr, Ni, Zn, and Fe were mainly concentrated in the residual fractions (>85%), whereas Mn and Cd were mostly observed in the non-residual fractions (>65%). The non-residual fractions of Cd, Cr, Ni, and Zn in the croplands were higher than those in the abandoned croplands. These results indicated that the content and mobility of soil heavy metals decreased after reforestation. The individual contamination factor (ICF) and risk assessment code (RAC) showed that Cd contributed to considerable contamination of karst soils. The global contamination factor (GCF) and potential ecological risk index (RI) suggested low contamination and ecological risk of the investigated heavy metals in the croplands, moreover they can be further reduced after reforestation.


Sign in / Sign up

Export Citation Format

Share Document