scholarly journals Interacting effects of insect and ungulate herbivory on Scots pine growth

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle Nordkvist ◽  
Maartje J. Klapwijk ◽  
La rs Edenius ◽  
Christer Björkman

AbstractMost plants are subjected to damage from multiple species of herbivores, and the combined impact on plant growth can be non-additive. Since plant response to herbivores tends to be species specific, and change with repeated damage, the outcome likely depend on the sequence and number of attacks. There is a high likelihood of non-additive effects on plant growth by damage from mammals and insects, as mammalian herbivory can alter insect herbivore damage levels, yet few studies have explored this. We report the growth response of young Scots pine trees to sequential mammal and insect herbivory, varying the sequence and number of damage events, using an ungulate-pine-sawfly system. Combined sawfly and ungulate herbivory had both additive and non-additive effects on pine growth—the growth response depended on the combination of ungulate browsing and sawfly defoliation (significant interaction effect). Repeated sawfly herbivory reduced growth (compared to single defoliation) on un-browsed trees. However, on browsed trees, depending on when sawfly defoliation was combined with browsing, trees exposed to repeated sawfly herbivory had both higher, lower and the same growth as trees exposed to a single defoliation event. We conclude that the sequence of attacks by multiple herbivores determine plant growth response.

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 794B-794
Author(s):  
Bert T. Swanson ◽  
James B. Calkins

Five composted Municipal Solid Waste (MSW) (garbage) products and a composted manure were evaluated as container growing media components on eight woody and herbaceous plants. Plant growth response to the different composts and to the quality of compost used was species-specific. Media UM Manure 100 provided the greatest increase in plant height across all species during the first year. However, only one species, V. lentaga, actually ranked number one in UM Manure 100. J.h. `Blue Chip' and A. tuberosa both grew the tallest in Control I. The remaining five species grew tallest in five different media. Therefore, several amended media can provide increased plant height for specific species; however, the top three media for plant height across all species were: #1 UM Manure 100, #2 Prairieland 50, and #3 Pennington 50. Plant height was the lowest in Recomp 100 media. Pennington 50 provided the greatest increase in plant volume. Media producing the highest plant dry weights across all species were: #1 Prairieland 50, #2 Pennington 50 and #3 UM Manure 50. Plants grown in Recomp 100 had the lowest plant dry weight. Media physical properties such as media drainage and aeration were affected by amendment quality and quantity.


2021 ◽  
Author(s):  
Cecilia Di Bernardi ◽  
Camilla Wikenros ◽  
Eva Hedmark ◽  
Luigi Boitani ◽  
Paolo Ciucci ◽  
...  

2017 ◽  
Vol 65 (4) ◽  
pp. 327 ◽  
Author(s):  
Saskia Grootemaat ◽  
Ian J. Wright ◽  
Peter M. van Bodegom ◽  
Johannes H. C. Cornelissen ◽  
Veronica Shaw

Bark shedding is a remarkable feature of Australian trees, yet relatively little is known about interspecific differences in bark decomposability and flammability, or what chemical or physical traits drive variation in these properties. We measured the decomposition rate and flammability (ignitibility, sustainability and combustibility) of bark from 10 common forest tree species, and quantified correlations with potentially important traits. We compared our findings to those for leaf litter, asking whether the same traits drive flammability and decomposition in different tissues, and whether process rates are correlated across tissue types. Considerable variation in bark decomposability and flammability was found both within and across species. Bark decomposed more slowly than leaves, but in both tissues lignin concentration was a key driver. Bark took longer to ignite than leaves, and had longer mass-specific flame durations. Variation in flammability parameters was driven by different traits in the different tissues. Decomposability and flammability were each unrelated, when comparing between the different tissue types. For example, species with fast-decomposing leaves did not necessarily have fast-decomposing bark. For the first time, we show how patterns of variation in decomposability and flammability of bark diverge across multiple species. By taking species-specific bark traits into consideration there is potential to make better estimates of wildfire risks and carbon loss dynamics. This can lead to better informed management decisions for Australian forests, and eucalypt plantations, worldwide.


1991 ◽  
Vol 27 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Tero Kuoksa ◽  
Anja Hohtola
Keyword(s):  

The Holocene ◽  
2021 ◽  
pp. 095968362199465
Author(s):  
Dael Sassoon ◽  
William J Fletcher ◽  
Alastair Hotchkiss ◽  
Fern Owen ◽  
Liting Feng

Around 4000 cal yr BP, Scots pine ( Pinus sylvestris) suffered a widespread demise across the British Isles. This paper presents new information about P. sylvestris populations found in the Welsh Marches (western central Britain), for which the long-term history and origins are poorly known. Two new pollen records were produced from the Lin Can Moss ombrotrophic bog (LM18) and the Breidden Hill pond (BH18). The LM18 peat core is supported by loss-on-ignition, humification analysis and radiocarbon dating. Lead concentrations were used to provide an estimated timeframe for the recent BH18 record. In contrast to many other Holocene pollen records from the British Isles, analysis of LM18 reveals that Scots pine grains were deposited continuously between c. 6900–300 cal yr BP, at frequencies of 0.3–5.4%. It is possible that individual Scots pine trees persisted through the wider demise on thin soils of steep drought-prone crags of hills or the fringes of lowland bogs in the Welsh Marches. At BH18, the record indicates a transition from broadleaved to mixed woodland, including conifer species introduced around AD 1850 including Picea and Pinus. The insights from BH18 suggest that the current populations may largely be the result of planting. Comparison of the LM18 findings with other regional pollen records highlights consistent patterns, including a Mid-Holocene maximum (ca. 7000 cal yr BP), long-term persistence at low pollen percentages and a Late-Holocene minimum (ca. 3000 cal yr BP). These distinctive trends encourage further studies on refugial areas for Scots pine in this region and elsewhere.


2019 ◽  
Vol 30 (5) ◽  
pp. 1041-1048 ◽  
Author(s):  
Yunwu Xiong ◽  
Bing Yu ◽  
Mengting Bai ◽  
Xueyang Zhang ◽  
Guanhua Huang ◽  
...  

Rhizosphere ◽  
2019 ◽  
Vol 9 ◽  
pp. 38-46 ◽  
Author(s):  
Dante A. López-Carmona ◽  
Alejandro Alarcón ◽  
Esperanza Martínez-Romero ◽  
Juan José Peña-Cabriales ◽  
John Larsen

Soil Science ◽  
2008 ◽  
Vol 173 (5) ◽  
pp. 342-349 ◽  
Author(s):  
C. Edward Clapp ◽  
Moshe Shenker ◽  
Michael H. B. Hayes ◽  
Raymond Liu ◽  
Van W. Cline ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document