scholarly journals Bark traits, decomposition and flammability of Australian forest trees

2017 ◽  
Vol 65 (4) ◽  
pp. 327 ◽  
Author(s):  
Saskia Grootemaat ◽  
Ian J. Wright ◽  
Peter M. van Bodegom ◽  
Johannes H. C. Cornelissen ◽  
Veronica Shaw

Bark shedding is a remarkable feature of Australian trees, yet relatively little is known about interspecific differences in bark decomposability and flammability, or what chemical or physical traits drive variation in these properties. We measured the decomposition rate and flammability (ignitibility, sustainability and combustibility) of bark from 10 common forest tree species, and quantified correlations with potentially important traits. We compared our findings to those for leaf litter, asking whether the same traits drive flammability and decomposition in different tissues, and whether process rates are correlated across tissue types. Considerable variation in bark decomposability and flammability was found both within and across species. Bark decomposed more slowly than leaves, but in both tissues lignin concentration was a key driver. Bark took longer to ignite than leaves, and had longer mass-specific flame durations. Variation in flammability parameters was driven by different traits in the different tissues. Decomposability and flammability were each unrelated, when comparing between the different tissue types. For example, species with fast-decomposing leaves did not necessarily have fast-decomposing bark. For the first time, we show how patterns of variation in decomposability and flammability of bark diverge across multiple species. By taking species-specific bark traits into consideration there is potential to make better estimates of wildfire risks and carbon loss dynamics. This can lead to better informed management decisions for Australian forests, and eucalypt plantations, worldwide.

2021 ◽  
Author(s):  
Cecilia Di Bernardi ◽  
Camilla Wikenros ◽  
Eva Hedmark ◽  
Luigi Boitani ◽  
Paolo Ciucci ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle Nordkvist ◽  
Maartje J. Klapwijk ◽  
La rs Edenius ◽  
Christer Björkman

AbstractMost plants are subjected to damage from multiple species of herbivores, and the combined impact on plant growth can be non-additive. Since plant response to herbivores tends to be species specific, and change with repeated damage, the outcome likely depend on the sequence and number of attacks. There is a high likelihood of non-additive effects on plant growth by damage from mammals and insects, as mammalian herbivory can alter insect herbivore damage levels, yet few studies have explored this. We report the growth response of young Scots pine trees to sequential mammal and insect herbivory, varying the sequence and number of damage events, using an ungulate-pine-sawfly system. Combined sawfly and ungulate herbivory had both additive and non-additive effects on pine growth—the growth response depended on the combination of ungulate browsing and sawfly defoliation (significant interaction effect). Repeated sawfly herbivory reduced growth (compared to single defoliation) on un-browsed trees. However, on browsed trees, depending on when sawfly defoliation was combined with browsing, trees exposed to repeated sawfly herbivory had both higher, lower and the same growth as trees exposed to a single defoliation event. We conclude that the sequence of attacks by multiple herbivores determine plant growth response.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 622
Author(s):  
Alexandra Ciorîță ◽  
Septimiu Cassian Tripon ◽  
Ioan Gabriel Mircea ◽  
Dorina Podar ◽  
Lucian Barbu-Tudoran ◽  
...  

Morphological and anatomical traits of the Vinca leaf were examined using microscopy techniques. Outdoor Vinca minor and V. herbacea plants and greenhouse cultivated V. major and V. major var. variegata plants had interspecific variations. All Vinca species leaves are hypostomatic. However, except for V. minor leaf, few stomata were also present on the upper epidermis. V. minor leaf had the highest stomatal index and V. major had the lowest, while the distribution of trichomes on the upper epidermis was species-specific. Differentiated palisade and spongy parenchyma tissues were present in all Vinca species’ leaves. However, V. minor and V. herbacea leaves had a more organized anatomical aspect, compared to V. major and V. major var. variegata leaves. Additionally, as a novelty, the cellular to intercellular space ratio of the Vinca leaf’s mesophyll was revealed herein with the help of computational analysis. Lipid droplets of different sizes and aspects were localized in the spongy parenchyma cells. Ultrastructural characteristics of the cuticle and its epicuticular waxes were described for the first time. Moreover, thick layers of cutin seemed to be characteristic of the outdoor plants only. This could be an adaptation to the unpredictable environmental conditions, but nevertheless, it might influence the chemical composition of plants.


2016 ◽  
Vol 94 (12) ◽  
pp. 829-836 ◽  
Author(s):  
B.J. Klüg-Baerwald ◽  
L.E. Gower ◽  
C.L. Lausen ◽  
R.M. Brigham

Winter activity of bats is common, yet poorly understood. Other studies suggest a relationship between winter activity and ambient temperature, particularly temperature at sunset. We recorded echolocation calls to determine correlates of hourly bat activity in Dinosaur Provincial Park, Alberta, Canada. We documented bat activity in temperatures as low as −10.4 °C. We observed big brown bats (Eptesicus fuscus (Palisot de Beauvois, 1796)) flying at colder temperatures than species of Myotis bats (genus Myotis Kaup, 1829). We show that temperature and wind are important predictors of winter activity by E. fuscus and Myotis, and that Myotis may also use changes in barometric pressure to cue activity. In the absence of foraging opportunity, we suggest these environmental factors relate to heat loss and thus the energetic cost of flight. To understand the energetic consequences of bat flight in cold temperatures, we estimated energy expenditure during winter flights of E. fuscus and little brown myotis (Myotis lucifugus (Le Conte, 1831)) using species-specific parameters. We estimated that winter flight uses considerable fat stores and that flight thermogenesis could mitigate energetic costs by 20% or more. We also show that temperature-dependent interspecific differences in winter activity likely stem from differences between species in heat loss and potential for activity–thermoregulatory heat substitution.


2007 ◽  
Vol 44 (2) ◽  
pp. 43-46 ◽  
Author(s):  
D. Kuznetsov ◽  
N. Kuznetsova

AbstractFor the first time, DNA sequence data were obtained for three species of Trichostrongylus from Russia. Internal transcribed spacer (ITS-2) of ribosomal DNA was sequenced for T. axei, T. colubriformis and T. probolurus from sheep from the Moscow region. ITS-2 rDNA length was estimated as 238 nucleotides for T. colubriformis and T. probolurus and 237 nucleotides for T. axei. The G+C content of the ITS-2 sequences of T. colubriformis, T. axei and T. probolurus were 31 %, 32 % and 34 % respectively. The level of interspecific differences in ITS-2 of rDNA of T. axei, T. probolurus and T. colubriformis ranged from 3 to 4 %. The ITS-2 sequences from the Russian specimens were compared with those of T. axei, T. probolurus and T. colubriformis from Australia and Germany. Intraspecific variation ranged from 0 % in T. colubriformis to 3.0 % in T. axei.


2019 ◽  
Author(s):  
Ivan Andreevich Kerchev

Stridulatory signals are involved in conspecific interactions between bark beetles (Coleoptera: Curculionidae, Scolytinae). In this study, we compared the qualitative profiles of acoustic signals in three species from the genus Polygraphus Er. Sympatry can be periodically observed in two of them – P. proximus and P. subopacus. Sporadically they occur on the same plants. P. nigrielytris colonize distinctly different host plant species; however, on the island of Sakhalin it inhabits the same biotopes. The purpose of the study is to identify species-specific parameters and the extent of differences in stridulatory signals of these species. Airborne signals produced during the contact of males of the same species were experimentally recorded. Among tested parameters of stridulatory signals, as the most species-specific were noted: chirp duration, interchirp interval, number of tooth-strikes per chirp, and intertooth-strike interval.


2020 ◽  
Author(s):  
Tatsuma Shoji ◽  
Akiko Takaya ◽  
Yoko Kusuya ◽  
Hiroki Takahashi ◽  
Hiroto Kawashima

2.Abstract(1) BackgroundMany nucleotides in 23S rRNA are methylated post-transcriptionally by methyltransferases and cluster around the peptidyltransferase center (PTC) and the nascent peptidyl exit tunnel (NPET) located in 50S subunit of 70S ribosome. Biochemical interactions between a nascent peptide and the tunnel may stall ribosome movement and affect expression levels of the protein. However, no studies have shown a role for NPET on ribosome stalling using an NPET mutant.(2) ResultsA ribosome profiling assay in Streptococcus pneumoniae demonstrates for the first time that an NPET mutant exhibits completely different ribosome occupancy compared to wild-type. We demonstrate, using RNA footprinting, that changes in ribosome occupancy correlate with changes in ribosome stalling. Further, statistical analysis shows that short peptide sequences that cause ribosome stalling are species-specific and evolutionarily selected. NPET structure is required to realize these specie-specific ribosome stalling.(3) ConclusionsResults support the role of NPET on ribosome stalling. NPET structure is required to realize the species-specific and evolutionary conserved ribosome stalling. These findings clarify the role of NPET structure on the translation process.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Héctor Vicente Ramírez-Gómez ◽  
Vilma Jimenez Sabinina ◽  
Martín Velázquez Pérez ◽  
Carmen Beltran ◽  
Jorge Carneiro ◽  
...  

Spermatozoa of marine invertebrates are attracted to their conspecific female gamete by diffusive molecules, called chemoattractants, released from the egg investments in a process known as chemotaxis. The information from the egg chemoattractant concentration field is decoded into intracellular Ca2+ concentration ([Ca2+]i) changes that regulate the internal motors that shape the flagellum as it beats. By studying sea urchin species-specific differences in sperm chemoattractant-receptor characteristics we show that receptor density constrains the steepness of the chemoattractant concentration gradient detectable by spermatozoa. Through analyzing different chemoattractant gradient forms, we demonstrate for the first time that Strongylocentrotus purpuratus sperm are chemotactic and this response is consistent with frequency entrainment of two coupled physiological oscillators: i) the stimulus function and ii) the [Ca2+]i changes. We demonstrate that the slope of the chemoattractant gradients provides the coupling force between both oscillators, arising as a fundamental requirement for sperm chemotaxis.


1990 ◽  
Vol 47 (2) ◽  
pp. 335-345 ◽  
Author(s):  
Yvan Lambert ◽  
Julian J. Dodson

We tested the hypothesis that differences in the cost of freshwater migration are responsible for the different reproductive patterns exhibited by the Eastmain River (James Bay) populations of anadromous cisco and lake whitefish, as predicted by species-specific migration costs that result in interspecific differences in energy allocation to growth, survival, and reproduction. In the Eastmain River, cisco spawn at a younger age and a smaller size, have a shorter life span and show a higher fecundity and a higher mortality than lake whitefish. Assuming that the two populations are stable (being only lightly exploited), the two species spawn at an age that maximizes their lifetime fecundity. Either juvenile (between three and age at maturity) and/or adult mortality is of major importance in moulding the observed age at maturity but adult mortality may play a predominant role. Adult mortality is associated with migration, an obligatory cost representing a major proportion of the energy loss experienced by reproductive individuals. The difference in the energy cost of migration between the two species suggests that migration may play a predominant role in producing the different reproductive patterns of cisco and lake whitefish in the Eastmain River and that within the physiological and size constraints of each species, these patterns represent optimal adaptations maximizing fitness.


2020 ◽  
Author(s):  
Víctor Fernández-Juárez ◽  
Xabier López-Alforja ◽  
Aida Frank-Comas ◽  
Pedro Echeveste ◽  
Antoni Bennasar-Figueras ◽  
...  

AbstractThe accumulation of microplastics (MPs) pollution at depths suggests the susceptibility of benthic organisms (e.g. seagrasses and their associated macro- and micro-organisms) to the effects of these pollutants. Little is known about the direct effects of MPs and their organic additives on marine bacteria, e.g. in one of the most ecologically significant groups, the diazotrophs or N2-fixing bacteria. To fill this gap of knowledge, we exposed marine diazotrophs found in association with the endemic Mediterranean seagrass Posidonia oceanica to pure MPs which differ in physical properties (e.g. density, hydrophobicity and/or size), namely, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS) and to their most abundant associated organic additives (e.g. fluoranthene, 1,2,5,6,9,10-hexabromocyclododecane [HBCD] and dioctyl-phthalate [DEHP]). Growth, protein overexpression, direct physical interactions between MPs and bacteria, phosphorus (P) acquisition mechanisms and N2-fixation rates were evaluated. Our results show species-specific responses of the autotrophic and heterotrophic N2-fixing bacteria tested and the responses were dependent on the type and concentration of MPs and additives. N2-fixing cyanobacteria were positively affected by environmental and high concentrations of MPs (e.g. PVC), as opposed to heterotrophic strains, that were only positively affected with high concentrations of ∼120 µm-size MPs (detecting the overexpression of proteins related to plastic degradation and C-transport), and negatively affected by 1 µm-size PS beads. Generally, the organic additives (e.g. fluoranthene) had a deleterious effect in both autotrophic and heterotrophic N2-fixing bacteria and the magnitude of the effect is suggested to be dependent on bacterial size. We did not find evidences that specific N2-fixation rates were significantly affected by exposure to MPs, albeit changes in bacterial abundance can affect the bulk N2-fixation rates. In summary, we reported for the first time, the beneficial (the “good”), deleterious (the “bad”) and/or both (the “double-sword”) effects of exposure to MPs and their organic additives on diazotrophs found in association with seagrasses.


Sign in / Sign up

Export Citation Format

Share Document