scholarly journals Integration of genome-wide association study and expression quantitative trait locus mapping for identification of endometriosis-associated genes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ya-Ching Chou ◽  
Ming-Jer Chen ◽  
Pi-Hua Chen ◽  
Ching-Wen Chang ◽  
Mu-Hsien Yu ◽  
...  

AbstractTo determine whether genetic predisposition to endometriosis varies depending on ethnicity and in association with expression quantitative trait loci (eQTL) in a Taiwanese population. We conducted a genome-wide association study (GWAS) and replicated it in 259 individuals with laparoscopy-confirmed stage III or IV endometriosis (cases) and 171 women without endometriosis (controls). Their genomic DNA was extracted from blood and evaluated by the GWAS of Taiwan Biobank Array. Novel genetic variants that predispose individuals to endometriosis were identified using GWAS and replication, including rs10739199 (P = 6.75 × 10−5) and rs2025392 (P = 8.01 × 10−5) at chromosome 9, rs1998998 (P = 6.5 × 10−6) at chromosome 14, and rs6576560 (P = 9.7 × 10−6) at chromosome 15. After imputation, strong signals were exhibited by rs10822312 (P = 1.80 × 10−7) at chromosome 10, rs58991632 (P = 1.92 × 10−6) and rs2273422 (P = 2.42 × 10−6) at chromosome 20, and rs12566078 (P = 2.5 × 10−6) at chromosome 1. We used the Genotype-Tissue Expression (GTEx) database to observe eQTL. Among these SNPs, the cis-eQTL rs13126673 of inturned planar cell polarity protein (INTU) showed significant association with INTU expression (P = 5.1 × 10–33). Moreover, the eQTL analysis was performed on endometriotic tissues from women with endometriosis. The expression of INTU in 78 endometriotic tissue of women with endometriosis is associated with rs13126673 genotype (P = 0.034). To our knowledge, this is the first GWAS to link endometriosis and eQTL in a Taiwanese population.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 751
Author(s):  
Hye-Rim Kim ◽  
Hyun-Seok Jin ◽  
Yong-Bin Eom

Hypertension is one of the major risk factors for chronic kidney disease (CKD), and the coexistence of hypertension and CKD increases morbidity and mortality. Although many genetic factors have been identified separately for hypertension and kidney disease, studies specifically focused on hypertensive kidney disease (HKD) have been rare. Therefore, this study aimed to identify loci or genes associated with HKD. A genome-wide association study (GWAS) was conducted using two Korean cohorts, the Health Examinee (HEXA) and Korean Association REsource (KARE). Consequently, 19 single nucleotide polymorphisms (SNPs) were found to be significantly associated with HKD in the discovery and replication phases (p < 5 × 10−8, p < 0.05, respectively). We further analyzed HKD-related traits such as the estimated glomerular filtration rate (eGFR), creatinine, blood urea nitrogen (BUN), systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the 14q21.2 locus, which showed a strong linkage disequilibrium (LD). Expression quantitative trait loci (eQTL) analysis was also performed to determine whether HKD-related SNPs affect gene expression changes in glomerular and arterial tissues. The results suggested that the FANCM gene may affect the development of HKD through an integrated analysis of eQTL and GWAS and was the most significantly associated candidate gene. Taken together, this study indicated that the FANCM gene is involved in the pathogenesis of HKD. Additionally, our results will be useful in prioritizing other genes for further experiments.


2020 ◽  
Vol 71 (10) ◽  
pp. 884
Author(s):  
Zhikun Wang ◽  
Mingming Yang ◽  
Yuanzhuo Wang ◽  
Chao Yang ◽  
Xue Zhao ◽  
...  

Association analysis is an alternative to conventional, family-based methods for detecting the location of gene(s) or quantitative trait loci (QTLs), and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Flavour is an essential quality characteristic of soymilk; however, soymilk contains volatile compounds unacceptable to consumers. One of main constituents in the volatiles of normal soymilk is 2-heptenal, which is thought to be a degradative oxidation product of polyunsaturated acids. In this study, a genome-wide association study using 24651 single-nucleotide polymorphisms (SNPs) was performed to identify quantitative trait nucleotides (QTNs) controlling 2-heptenal content in soybean (Glycine max (L.) Merr.) seed from a natural population of 110 soybean germplasm accessions. We detected 62 significant QTNs located on 18 different chromosomes that are significantly associated with 2-heptenal content in soybean seed. Among these, 17 QTNs co-localised with QTLs previously found to be related to protein, oil and/or fatty acid content in soybean seed. We also identified some candidate genes involved in lipid metabolism. These findings further our understanding of the genetic basis of 2-heptenal content in soybean seed and the improvement of marker-assisted breeding efficiency, which will be important for breeding soybean cultivars with low 2-heptenal content.


PLoS Genetics ◽  
2008 ◽  
Vol 4 (5) ◽  
pp. e1000072 ◽  
Author(s):  
David Melzer ◽  
John R. B. Perry ◽  
Dena Hernandez ◽  
Anna-Maria Corsi ◽  
Kara Stevens ◽  
...  

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Alibek Zatybekov ◽  
Yuliya Genievskaya ◽  
Aralbek Rsaliyev ◽  
Akerke Maulenbay ◽  
Gulbahar Yskakova ◽  
...  

In recent years, leaf rust (LR) and stem rust (SR) have become a serious threat to bread wheat production in Kazakhstan. Most local cultivars are susceptible to these rusts, which has affected their yield and quality. The development of new cultivars with high productivity and LR and SR disease resistance, including using marker-assisted selection, is becoming an important priority in local breeding projects. Therefore, the search for key genetic factors controlling resistance in all plant stages, including the seedling stage, is of great significance. In this work, we applied a genome-wide association study (GWAS) approach using 212 local bread wheat accessions that were phenotyped for resistance to specific races of Puccinia triticina Eriks. (Pt) and Puccinia graminis f. sp. tritici (Pgt) at the seedling stages. The collection was genotyped using a 20 K Illumina iSelect SNP assay, and 11,150 polymorphic SNP markers were selected for the association mapping. Using a mixed linear model, we identified 11 quantitative trait loci (QTLs) for five out of six specific races of Pt and Pgt. The comparison of the results from this GWAS with those from previously published work showed that nine out of eleven QTLs for LR and SR resistance had been previously reported in a GWAS study at the adult plant stages of wheat growth. Therefore, it was assumed that these nine common identified QTLs were effective for all-stage resistance to LR and SR, and the two other QTLs appear to be novel QTLs. In addition, five out of these nine QTLs that had been identified earlier were found to be associated with yield components, suggesting that they may directly influence the field performance of bread wheat. The identified QTLs, including novel QTLs found in this study, may play an essential role in the breeding process for improving wheat resistance to LR and SR.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiazhong Guo ◽  
Rui Jiang ◽  
Ayi Mao ◽  
George E. Liu ◽  
Siyuan Zhan ◽  
...  

Abstract Background There is a long-term interest in investigating the genetic basis of the horned/polled phenotype in domestic goats. Here, we report a genome-wide association study (GWAS) to detect the genetic loci affecting the polled phenotype in goats. Results We obtained a total of 13,980,209 biallelic SNPs, using the genotyping-by-sequencing data from 45 Jintang Black (JT) goats, which included 32 female and nine male goats, and four individuals with the polled intersex syndrome (PIS). Using a mixed-model based GWAS, we identified two association signals, which were located at 150,334,857–150,817,260 bp (P = 5.15 × 10− 119) and 128,286,704–131,306,537 bp (P = 2.74 × 10− 15) on chromosome 1. The genotype distributions of the 14 most significantly associated SNPs were completely correlated with horn status in goats, based on the whole-genome sequencing (WGS) data from JT and two other Chinese horned breeds. However, variant annotation suggested that none of the detected SNPs within the associated regions were plausible causal mutations. Via additional read-depth analyses and visual inspections of WGS data, we found a 10.1-kb deletion (CHI1:g. 129424781_129434939del) and a 480-kb duplication (CHI1:150,334,286–150,818,098 bp) encompassing two genes KCNJ15 and ERG in the associated regions of polled and PIS-affected goats. Notably, the 10.1-kb deletion also served as the insertion site for the 480-kb duplication, as validated by PCR and Sanger sequencing. Our WGS genotyping showed that all horned goats were homozygous for the reference alleles without either the structural variants (SVs), whereas the PIS-affected goats were homozygous for both the SVs. We also demonstrated that horned, polled, and PIS-affected individuals among 333 goats from JT and three other Chinese horned breeds can be accurately classified via PCR amplification and agarose gel electrophoresis of two fragments in both SVs. Conclusion Our results revealed that two genomic regions on chromosome 1 are major loci affecting the polled phenotypes in goats. We provided a diagnostic PCR to accurately classify horned, polled, and PIS-affected goats, which will enable a reliable genetic test for the early-in-life prediction of horn status in goats.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 759 ◽  
Author(s):  
Caleb Manamik Breria ◽  
Ching-Hsiang Hsieh ◽  
Tsair-Bor Yen ◽  
Jo-Yi Yen ◽  
Thomas J. Noble ◽  
...  

Mungbean (Vigna radiata (L.) R. Wilzeck var. radiata) is a protein-rich short-duration legume that fits well as a rotation crop into major cereal production systems of East and South-East Asia. Salinity stress in arid areas affects mungbean, being more of a glycophyte than cereals. A significant portion of the global arable land is either salt or sodium affected. Thus, studies to understand and improve salt-stress tolerance are imminent. Here, we conducted a genome-wide association study (GWAS) to mine genomic loci underlying salt-stress tolerance during seed germination of mungbean. The World Vegetable Center (WorldVeg) mungbean minicore collection representing the diversity of mungbean germplasm was utilized as the study panel and variation for salt stress tolerance was found in this germplasm collection. The germplasm panel was classed into two agro-climatic groups and showed significant differences in their germination abilities under salt stress. A total of 5288 SNP markers obtained through genotyping-by-sequencing (GBS) were used to mine alleles associated with salt stress tolerance. Associated SNPs were identified on chromosomes 7 and 9. The associated region at chromosome 7 (position 2,696,072 to 2,809,200 bp) contains the gene Vradi07g01630, which was annotated as the ammonium transport protein (AMT). The associated region in chromosome 9 (position 19,390,227 bp to 20,321,817 bp) contained the genes Vradi09g09510 and Vradi09g09600, annotated as OsGrx_S16-glutaredoxin subgroup II and dnaJ domain proteins respectively. These proteins were reported to have functions related to salt-stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document