scholarly journals Structural Properties of (GaIn)(AsN)/GaAs MQW Structures Grown by MOVPE

2000 ◽  
Vol 5 (S1) ◽  
pp. 259-265 ◽  
Author(s):  
C. Giannini ◽  
E. Carlino ◽  
L. Tapfer ◽  
F. Höhnsdorf ◽  
J. Koch ◽  
...  

In this work, we investigate the structural properties of (GaIn)(AsN)/GaAs multiple quantum wells (MQW) grown at low temperature by metalorganic vapour phase epitaxy. The structural properties, in particular the In- and N-incorporation, the lattice strain (strain modulation), the structural perfection of the metastable (GaIn)(AsN) material system and the structural quality of the (GaIn)(AsN)/GaAs interfaces are investigated by means of high-resolution x-ray diffraction, transmission electron microscopy (TEM), and secondary ion mass spectrometry. We demonstrate that (GaIn)(AsN) layers of high structural quality can be fabricated up to lattice mismatches of 4%. Our experiments reveal that N and In atoms are localized in the quaternary material and no evidences of In-segregation or N-interdiffusion could be found. TEM analyses reveal a low defect density in the highly strained layers, but no clustering or interface undulation could be detected. High-resolution TEM images show that (GaIn)(AsN)/GaAs interfaces are slightly rougher than GaAs/(GaIn)(AsN) ones.

1999 ◽  
Vol 595 ◽  
Author(s):  
C. Giannini ◽  
E. Carlino ◽  
L. Tapfer ◽  
F. Höhnsdorf ◽  
J. Koch ◽  
...  

AbstractIn this work, we investigate the structural properties of (GaIn)(AsN)/GaAs multiplequantum wells (MQW) grown at low temperature by metalorganic vapour phase epitaxy. The structural properties, in particular the In- and N-incorporation, the lattice strain (strain modulation), the structural perfection of the metastable (GaIn)(AsN) material system and the structural quality of the (GaIn)(AsN)/GaAs interfaces are investigated by means of high-resolution x-ray diffraction, transmission electron microscopy (TEM), and secondary ion mass spectrometry. We demonstrate that (GaIn)(AsN) layers of high structural quality can be fabricated up to lattice mismatches of 4%. Our experiments reveal that N and In atoms are localized in the quaternary material and no evidences of In-segregation or N-interdiffusion could be found. TEM analyses reveal a low defect density in the highly strained layers, but no clustering or interface undulation could be detected. High-resolution TEM images show that (GaIn)(AsN)/GaAs interfaces are slightly rougher than GaAs/(GaIn)(AsN) ones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agata Bojarska-Cieślińska ◽  
Łucja Marona ◽  
Julita Smalc-Koziorowska ◽  
Szymon Grzanka ◽  
Jan Weyher ◽  
...  

AbstractIn this work we investigate the role of threading dislocations in nitride light emitters with different indium composition. We compare the properties of laser diodes grown on the low defect density GaN substrate with their counterparts grown on sapphire substrate in the same epitaxial process. All structures were produced by metalorganic vapour phase epitaxy and emit light in the range 383–477 nm. We observe that intensity of electroluminescence is strong in the whole spectral region for devices grown on GaN, but decreases rapidly for the devices on sapphire and emitting at wavelength shorter than 420 nm. We interpret this behaviour in terms of increasing importance of dislocation related nonradiative recombination for low indium content structures. Our studies show that edge dislocations are the main source of nonradiative recombination. We observe that long wavelength emitting structures are characterized by higher average light intensity in cathodoluminescence and better thermal stability. These findings indicate that diffusion path of carriers in these samples is shorter, limiting the amount of carriers reaching nonradiative recombination centers. According to TEM images only mixed dislocations open into the V-pits, usually above the multi quantum wells thus not influencing directly the emission.


Author(s):  
A. Carlsson ◽  
J.-O. Malm ◽  
A. Gustafsson

In this study a quantum well/quantum wire (QW/QWR) structure grown on a grating of V-grooves has been characterized by a technique related to chemical lattice imaging. This technique makes it possible to extract quantitative information from high resolution images.The QW/QWR structure was grown on a GaAs substrate patterned with a grating of V-grooves. The growth rate was approximately three monolayers per second without growth interruption at the interfaces. On this substrate a barrier of nominally Al0.35 Ga0.65 As was deposited to a thickness of approximately 300 nm using metalorganic vapour phase epitaxy . On top of the Al0.35Ga0.65As barrier a 3.5 nm GaAs quantum well was deposited and to conclude the structure an additional approximate 300 nm Al0.35Ga0.65 As was deposited. The GaAs QW deposited in this manner turns out to be significantly thicker at the bottom of the grooves giving a QWR running along the grooves. During the growth of the barriers an approximately 30 nm wide Ga-rich region is formed at the bottom of the grooves giving a Ga-rich stripe extending from the bottom of each groove to the surface.


1994 ◽  
Vol 65 (8) ◽  
pp. 956-958 ◽  
Author(s):  
S. R. Bowman ◽  
W. S. Rabinovich ◽  
C. S. Kyono ◽  
D. S. Katzer ◽  
K. Ikossi‐Anastasiou

Sign in / Sign up

Export Citation Format

Share Document