scholarly journals Sterol auto-oxidation adversely affects human motor neuron viability and is a neuropathological feature of amyotrophic lateral sclerosis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James C. Dodge ◽  
Jinlong Yu ◽  
S. Pablo Sardi ◽  
Lamya S. Shihabuddin

AbstractAberrant cholesterol homeostasis is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal neuromuscular disease that is due to motor neuron (MN) death. Cellular toxicity from excess cholesterol is averted when it is enzymatically oxidized to oxysterols and bile acids (BAs) to promote its removal. In contrast, the auto oxidation of excess cholesterol is often detrimental to cellular survival. Although oxidized metabolites of cholesterol are altered in the blood and CSF of ALS patients, it is unknown if increased cholesterol oxidation occurs in the SC during ALS, and if exposure to oxidized cholesterol metabolites affects human MN viability. Here, we show that in the SOD1G93A mouse model of ALS that several oxysterols, BAs and auto oxidized sterols are increased in the lumbar SC, plasma, and feces during disease. Similar changes in cholesterol oxidation were found in the cervical SC of sporadic ALS patients. Notably, auto-oxidized sterols, but not oxysterols and BAs, were toxic to iPSC derived human MNs. Thus, increased cholesterol oxidation is a manifestation of ALS and non-regulated sterol oxidation likely contributes to MN death. Developing therapeutic approaches to restore cholesterol homeostasis in the SC may lead to a treatment for ALS.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Jurate Lasiene ◽  
Koji Yamanaka

Amyotrophic lateral sclerosis (ALS) is an adult motor neuron disease characterized by premature death of upper and lower motor neurons. Two percent of ALS cases are caused by the dominant mutations in the gene for superoxide dismutase 1 (SOD1) through a gain of toxic property of mutant protein. Genetic and chimeric mice studies using SOD1 models indicate that non-neuronal cells play important roles in neurodegeneration through non-cell autonomous mechanism. We review the contribution of each glial cell type in ALS pathology from studies of the rodent models and ALS patients. Astrogliosis and microgliosis are not only considerable hallmarks of the disease, but the intensity of microglial activation is correlated with severity of motor neuron damage in human ALS. The impaired astrocytic functions such as clearance of extracellular glutamate and release of neurotrophic factors are implicated in disease. Further, the damage within astrocytes and microglia is involved in accelerated disease progression. Finally, other glial cells such as NG2 cells, oligodendrocytes and Schwann cells are under the investigation to determine their contribution in ALS. Accumulating knowledge of active role of glial cells in the disease should be carefully applied to understanding of the sporadic ALS and development of therapy targeted for glial cells.


2018 ◽  
Author(s):  
Silas Maniatis ◽  
Tarmo Äijö ◽  
Sanja Vickovic ◽  
Catherine Braine ◽  
Kristy Kang ◽  
...  

AbstractParalysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify novel pathway dynamics, regional differences between microglia and astrocyte populations at early time-points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.One Sentence SummaryAnalysis of the ALS spinal cord using Spatial Transcriptomics reveals spatiotemporal dynamics of disease driven gene regulation.


2021 ◽  
Vol 36 (6) ◽  
pp. 1205-1205
Author(s):  
Etiane Navarro ◽  
Charles J Golden

Abstract Objective Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease caused by degeneration of the upper and lower motor neurons. This literature review examines the recurring etiology of cognitive impairments in ALS through empirical literature. The current study explores ALS across different subtypes and potential cognitive impairments. Two classifications are primarily examined ALS, and ALS with frontotemporal dementia (ALS-FTD). Involving three categories: familial inheritance pattern, genetic mutation, or sporadic. Neuropsychological studies affirm cognitive impairments in individuals diagnosed with ALS and ALS-FTD. Data Selection Data was culled from the American Psychological Association (PsycInfo), PubMed, Google Scholar. Terms used in this literature review include cognitive impairment in ALS and ALS-FTD, executive function deficiencies in ALS, neuropsychology in ALS, neuropsychological deficits in ALS, neuropsychological assessments for ALS, cognitive impairments in familial ALS, genetic ALS, and sporadic ALS, familial ALS, sporadic ALS, genetic mutations involved in ALS. Search dates December 20–23 of 2020 and March 3–4 of 2021. A total of 40 studies were examined. Data Synthesis ALS-patients demonstrate a significant cognitive impairment. However, influencing comorbidities accompanying the disease may be contributing to these impairments. Researchers employed neuroimaging and neuropsychological batteries to further understand influencing factors involved in ALS and cognition. Conclusions Researchers now understand ALS as a multi-symptomatic disorder and acknowledge the presence of cognitive impairments at various encased levels. There are limitations in neuropsychological batteries that accommodate for executive dysfunctions observed in ALS patients. Future studies should explore neuropsychological assessments that accommodate for motor deficits and dysarthria when assessing cognitive impairment in ALS patients.


2021 ◽  
Vol 8 (1) ◽  
pp. 25-38
Author(s):  
Marisa Cappella ◽  
Pierre-François Pradat ◽  
Giorgia Querin ◽  
Maria Grazia Biferi

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease’s pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.


Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. 89-93 ◽  
Author(s):  
Silas Maniatis ◽  
Tarmo Äijö ◽  
Sanja Vickovic ◽  
Catherine Braine ◽  
Kristy Kang ◽  
...  

Paralysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify pathway dynamics, distinguish regional differences between microglia and astrocyte populations at early time points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.


2017 ◽  
Vol 9 (391) ◽  
pp. eaaf3962 ◽  
Author(s):  
Keiko Imamura ◽  
Yuishin Izumi ◽  
Akira Watanabe ◽  
Kayoko Tsukita ◽  
Knut Woltjen ◽  
...  

Amyotrophic lateral sclerosis (ALS), a fatal disease causing progressive loss of motor neurons, still has no effective treatment. We developed a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout. Motor neurons were generated from induced pluripotent stem cells (iPSCs) derived from an ALS patient with a mutation in superoxide dismutase 1 (SOD1). Results of the screen showed that more than half of the hits targeted the Src/c-Abl signaling pathway. Src/c-Abl inhibitors increased survival of ALS iPSC-derived motor neurons in vitro. Knockdown of Src or c-Abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration. One of the hits, bosutinib, boosted autophagy, reduced the amount of misfolded mutant SOD1 protein, and attenuated altered expression of mitochondrial genes. Bosutinib also increased survival in vitro of ALS iPSC-derived motor neurons from patients with sporadic ALS or other forms of familial ALS caused by mutations in TAR DNA binding protein (TDP-43) or repeat expansions in C9orf72. Furthermore, bosutinib treatment modestly extended survival of a mouse model of ALS with an SOD1 mutation, suggesting that Src/c-Abl may be a potentially useful target for developing new drugs to treat ALS.


Neurosurgery ◽  
2005 ◽  
Vol 57 (5) ◽  
pp. 984-989 ◽  
Author(s):  
Daniel Yoshor ◽  
Arnett Klugh ◽  
Stanley H. Appel ◽  
Lanny J. Haverkamp

Abstract OBJECTIVE: The high incidence of spondylosis in patients at the mean age of onset (55.7 yr) of amyotrophic lateral sclerosis (ALS) can make recognition of ALS as a cause of weakness difficult. METHODS: To assess the impact of this diagnostic dilemma on neurosurgical practice, we performed a retrospective analysis of a database of more than 1500 patients with motor neuron disease. RESULTS: Of 1131 patients with typical, sporadic ALS, 47 (4.2%) underwent decompressive spinal surgery after the onset of retrospectively recognized symptoms of ALS. Among 55 operations in 47 ALS patients, 86% yielded no improvement, 9% produced minor improvement, and only 5% provided significant benefit. Cervical decompression was performed in 56%, lumbar in 42%, and thoracic in 2%. Foot drop was a symptom prompting surgery in 11 patients, and in 10, this finding was subsequently attributed solely to ALS. No differences between ALS patients who underwent spinal decompression and other ALS patients were noted regarding age at symptom onset, severity of impairment at time of diagnosis, or rate of disease progression. Not surprisingly, patients who had spinal surgery tended to have a longer interval between retrospectively recognized symptom onset and diagnosis of ALS. CONCLUSION: A small but significant number of patients with unrecognized ALS undergo spinal surgery that in retrospect may be inappropriate. The possibility of ALS must be considered in the evaluation of patients with weakness even in the presence of radiographic evidence of spondylosis and nerve root or spinal cord impingement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojing Gu ◽  
Yongping Chen ◽  
Qianqian Wei ◽  
Yanbing Hou ◽  
Bei Cao ◽  
...  

Background: CYLD Lysine 63 Deubiquitinase gene (CYLD) was recently identified to be a novel causative gene for frontal temporal dementia (FTD)-amyotrophic lateral sclerosis (ALS). In the current study, we aimed to (1) systematically screen the mutations of CYLD in a large cohort of Chinese ALS patients, (2) study the genotype–phenotype correlation, and (3) explore the role of CYLD in ALS via rare variants burden analysis.Methods: A total of 978 Chinese sporadic ALS (sALS) patients and 46 familial ALS (fALS) patients were sequenced with whole-exome sequencing and analyzed rare variants in CYLD with minor allele frequency <0.1%.Results: In total, seven rare missense variants in CYLD have been identified in 7 (0.72%) patients among 978 sALS patients. Two (4.3%) rare missense variants were identified among the 46 fALS cases, in which one patient was diagnosed as having comorbidity of ALS and progressive supranuclear palsy (PSP). Moreover, the burden analysis indicated no enrichment of rare variants in CYLD among patients with ALS.Conclusion: In conclusion, our study extended the genotype and phenotype of CYLD in ALS, but the pathogenicity of these variants needs to be further verified. Moreover, burden analysis argued against the role of CYLD in the pathogenesis of ALS. More studies from different ethnicities would be needed.


Author(s):  
Jennifer M. Martinez-Thompson ◽  
Nathan P. Staff

Amyotrophic lateral sclerosis (ALS) is a rare, progressive neurodegenerative disorder with both upper and lower motor neuron involvement. It presents with weakness, muscle wasting, spasticity involving the limbs, bulbar dysfunction, and, typically later in the disease, respiratory involvement. Up to 20% of patients may also have a frontotemporal-type dementia. Average duration of survival is 2 to 4 years from symptom onset, and the peak incidence is between the ages of 50 and 75 years. Only 10% of patients have familial forms, and the remainder have sporadic ALS.


2007 ◽  
Vol 65 (4a) ◽  
pp. 1015-1017 ◽  
Author(s):  
Cassiano Mateus Forcelini ◽  
Francisco Tellechea Rotta ◽  
Naiana Posenato ◽  
Joana Stella Rovani ◽  
Paulo Sérgio Crusius ◽  
...  

Fasciculations are symptoms present in a broad spectrum of conditions, ranging from normal manifestations to motor neuron diseases. They also represent the main picture of benign fasciculation syndrome. We report a case of such syndrome: a 48-years-old woman complaining about fasciculations for three decades who remained with the symptoms even after the compensation of a disclosed hyperthyroidism. The introduction of gabapentin rendered control of her fasciculations. The available data in the literature about the therapeutic approaches for fasciculations are revised, as long as the rare reports of evolution from patients with "benign" fasciculations to cases of amyotrophic lateral sclerosis, underlining the importance of following the patients with fasciculations.


Sign in / Sign up

Export Citation Format

Share Document