scholarly journals Characterising clinical Staphylococcus aureus isolates from the sinuses of patients with chronic rhinosinusitis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett Wagner Mackenzie ◽  
Melissa Zoing ◽  
Fiona Clow ◽  
David W. Waite ◽  
Fiona J. Radcliff ◽  
...  

AbstractThe role of Staphylococcus aureus in the pathogenesis of the chronic sinonasal disease chronic rhinosinusitis (CRS), has not been definitively established. Comparative analyses of S. aureus isolates from CRS with those from control participants may offer insight into a possible pathogenic link between this organism and CRS. The intra- and inter-subject S. aureus strain-level diversity in the sinuses of patients with and without CRS were compared in this cross-sectional study. In total, 100 patients (CRS = 64, control = 36) were screened for S. aureus carriage. The overall carriage prevalence of S. aureus in this cohort was 24% (CRS n = 13, control n = 11). Cultured S. aureus isolates from 18 participants were strain-typed using spa gene sequencing. The bacterial community composition of the middle meatus was assessed using amplicon sequencing targeting the V3V4 hypervariable region of the bacterial 16S rRNA gene. S. aureus isolates cultured from patients were grown in co-culture with the commensal bacterium Dolosigranulum pigrum and characterised. All participants harboured a single S. aureus strain and no trend in disease-specific strain-level diversity was observed. Bacterial community analyses revealed a significant negative correlation in the relative abundances of S. aureus and D. pigrum sequences, suggesting an antagonistic interaction between these organisms. Co-cultivation experiments with these bacteria, however, did not confirm this interaction in vitro. We saw no significant associations of CRS disease with S. aureus strain types. The functional role that S. aureus occupies in CRS likely depends on other factors such as variations in gene expression and interactions with other members of the sinus bacterial community.

2021 ◽  
Vol 11 (3) ◽  
pp. 918
Author(s):  
Lingzi Mo ◽  
Augusto Zanella ◽  
Xiaohua Chen ◽  
Bin Peng ◽  
Jiahui Lin ◽  
...  

Continuing nitrogen (N) deposition has a wide-ranging impact on terrestrial ecosystems. To test the hypothesis that, under N deposition, bacterial communities could suffer a negative impact, and in a relatively short timeframe, an experiment was carried out for a year in an urban area featuring a cover of Bermuda grass (Cynodon dactylon) and simulating environmental N deposition. NH4NO3 was added as external N source, with four dosages (N0 = 0 kg N ha−2 y−1, N1 = 50 kg N ha−2 y−1, N2 = 100 kg N ha−2 y−1, N3 = 150 kg N ha−2 y−1). We analyzed the bacterial community composition after soil DNA extraction through the pyrosequencing of the 16S rRNA gene amplicons. N deposition resulted in soil bacterial community changes at a clear dosage-dependent rate. Soil bacterial diversity and evenness showed a clear trend of time-dependent decline under repeated N application. Ammonium nitrogen enrichment, either directly or in relation to pH decrease, resulted in the main environmental factor related to the shift of taxa proportions within the urban green space soil bacterial community and qualified as a putative important driver of bacterial diversity abatement. Such an impact on soil life induced by N deposition may pose a serious threat to urban soil ecosystem stability and surrounding areas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Daghio ◽  
Francesca Ciucci ◽  
Arianna Buccioni ◽  
Alice Cappucci ◽  
Laura Casarosa ◽  
...  

The use of rustic cattle is desirable to face challenges brought on by climate change. Maremmana (MA) and Aubrac (AU) are rustic cattle breeds that can be successfully used for sustainable production. In this study, correlations between two rearing systems (feedlot and grazing) and the rumen microbiota, the lipid composition of rumen liquor (RL), and the growth performance of MA and AU steers were investigated. Bacterial community composition was characterized by high-throughput sequencing of 16S rRNA gene amplicons, and the RL lipid composition was determined by measuring fatty acid (FA) and the dimethyl acetal profiles. The main factor influencing bacterial community composition was the cattle breed. Some bacterial groups were positively correlated to average daily weight gain for the two breeds (i.e., Rikenellaceae RC9 gut group, Fibrobacter and Succiniclasticum in the rumen of MA steers, and Succinivibrionaceae UCG-002 in the rumen of AU steers); despite this, animal performance appeared to be influenced by short chain FAs production pathways and by the presence of H2 sinks that divert the H2 to processes alternative to the methanogenesis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Brooke A. Clemmons ◽  
Madison T. Henniger ◽  
Phillip R. Myer

Abstract Objectives Extensive efforts have been made to characterize the rumen microbiome under various conditions. However, few studies have addressed the long-term impacts of ruminal microbiome dysbiosis and the extent of host control over microbiome stability. These data can also inform host-microbial symbioses. The objective was to develop preliminary data to measure the changes that occur in the rumen bacterial communities following a rumen content exchange to understand the effects major perturbations may impart upon the rumen microbiome, which may be host-driven. Data description We report here an initial rumen content exchange between two SimAngus (Simmental/Angus) non-pregnant, non-lactating cows of ~ 6 years of age weighing 603.4 ± 37.5 kg. To measure bacterial community succession and acclimation following the exchange, rumen content was collected via rumen cannula at the beginning of the study immediately prior to and following the rumen content exchange, and weekly for 12 weeks. The V4 hypervariable region of the 16S rRNA gene was targeted for DNA sequencing and bacterial analysis. Over 12 weeks, numerous genera and diversity varied, before partial return to pre-exchange metrics. These preliminary data help support potential host control for the rumen microbiome, aiding in efforts to define bovine host-microbe relationships.


2019 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Susanne Jacksch ◽  
Dominik Kaiser ◽  
Severin Weis ◽  
Mirko Weide ◽  
Stefan Ratering ◽  
...  

Modern, mainly sustainability-driven trends, such as low-temperature washing or bleach-free liquid detergents, facilitate microbial survival of the laundry processes. Favourable growth conditions like humidity, warmth and sufficient nutrients also contribute to microbial colonization of washing machines. Such colonization might lead to negatively perceived staining, corrosion of washing machine parts and surfaces, as well as machine and laundry malodour. In this study, we characterized the bacterial community of 13 domestic washing machines at four different sampling sites (detergent drawer, door seal, sump and fibres collected from the washing solution) using 16S rRNA gene pyrosequencing and statistically analysed associations with environmental and user-dependent factors. Across 50 investigated samples, the bacterial community turned out to be significantly site-dependent with the highest alpha diversity found inside the detergent drawer, followed by sump, textile fibres isolated from the washing solution, and door seal. Surprisingly, out of all other investigated factors only the monthly number of wash cycles at temperatures ≥ 60 °C showed a significant influence on the community structure. A higher number of hot wash cycles per month increased microbial diversity, especially inside the detergent drawer. Potential reasons and the hygienic relevance of this finding need to be assessed in future studies.


2018 ◽  
Vol 64 (12) ◽  
pp. 954-967 ◽  
Author(s):  
Liqiang Zhong ◽  
Daming Li ◽  
Minghua Wang ◽  
Xiaohui Chen ◽  
Wenji Bian ◽  
...  

The changes in the bacterial community composition in a channel catfish nursery pond with a cage–pond integration system were investigated by sequencing of the 16S rRNA gene through Illumina MiSeq sequencing platforms. A total of 1 362 877 sequences and 1440 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in the cage and pond groups were similar, including Actinobacteria, Cyanobacteria, Proteobacteria, and Bacteroidetes, although a significant difference was detected between them by ANOSIM (P < 0.05). Temporal changes and site variation were significantly related to the variation of the bacterial community. A comprehensive analysis of the diversity and evenness of the bacterial 16S rRNA gene, redundancy analysis (RDA), and partial Mantel test showed that the bacterial community composition in a cage–pond integration system was shaped more by temporal variation than by site variation. RDA also indicated that water temperature, total dissolved solids, and Secchi depth had the largest impact on bacterial populations.


2019 ◽  
Vol 34 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Dionyssia Papadopoulou ◽  
Alicja Dabrowska ◽  
Philip G. Harries ◽  
Jeremy S. Webb ◽  
Raymond N. Allan ◽  
...  

Background Chronic rhinosinusitis (CRS) is a common condition which affects the quality of life of millions of patients worldwide and has a significant impact on health-care resources. While Staphylococcus aureus bacterial biofilms play an important role in this disease, antimicrobial therapy is rarely effective and may promote antibiotic resistance. Thus, development of novel biofilm-targeting and antibiotic-sparing therapies is highly desirable and urgently required. Objective This in vitro study evaluated the antimicrobial activity of a novel synthetic honey-equivalent product which was designed to have the same reactive oxygen release profile as the engineered honey SurgihoneyRO™. Methods Treatment efficacy was investigated by assessment of planktonic growth, biofilm viability, thickness, and biomass using 12 CRS-related S. aureus mucosal bacterial strains. Results Both SurgihoneyRO™ and the synthetic honey-equivalent product inhibited growth of planktonic methicillin-resistant and methicillin-sensitive S. aureus strains, with the synthetic honey-equivalent product exhibiting a lower minimum inhibitory concentration. Treatment of established S. aureus biofilms reduced biofilm viability with 24-hour treatment resulting in a 2-log reduction in viability of biofilms formed by methicillin-resistant strains and a 1-log reduction in biofilms formed by methicillin-sensitive strains. Conclusions This preliminary study shows that the synthetic honey-equivalent product provides marked antimicrobial activity against S. aureus biofilms, with the potential for development in the clinical setting as an adjunctive biofilm-targeted therapy in CRS. The ultimate aim of such a product would be to reduce the need for antibiotics, steroids, and invasive surgical procedures in CRS patients as well as improving clinical outcomes following endoscopic sinus surgery.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Siwen Deng ◽  
Heidi M.-L. Wipf ◽  
Grady Pierroz ◽  
Ted K. Raab ◽  
Rajnish Khanna ◽  
...  

AbstractDespite growing interest in utilizing microbial-based methods for improving crop growth, much work still remains in elucidating how beneficial plant-microbe associations are established, and what role soil amendments play in shaping these interactions. Here, we describe a set of experiments that test the effect of a commercially available soil amendment, VESTA, on the soil and strawberry (Fragaria x ananassa Monterey) root bacterial microbiome. The bacterial communities of the soil, rhizosphere, and root from amendment-treated and untreated fields were profiled at four time points across the strawberry growing season using 16S rRNA gene amplicon sequencing on the Illumina MiSeq platform. In all sample types, bacterial community composition and relative abundance were significantly altered with amendment application. Importantly, time point effects on composition are more pronounced in the root and rhizosphere, suggesting an interaction between plant development and treatment effect. Surprisingly, there was slight overlap between the taxa within the amendment and those enriched in plant and soil following treatment, suggesting that VESTA may act to rewire existing networks of organisms through an, as of yet, uncharacterized mechanism. These findings demonstrate that a commercial microbial soil amendment can impact the bacterial community structure of both roots and the surrounding environment.


2005 ◽  
Vol 71 (7) ◽  
pp. 3624-3632 ◽  
Author(s):  
Alexander Loy ◽  
Wolfgang Beisker ◽  
Harald Meier

ABSTRACT Bacterial growth occurs in noncarbonated natural mineral waters a few days after filling and storage at room temperature, a phenomenon known for more than 40 years. Using the full-cycle rRNA approach, we monitored the development of the planktonic bacterial community in a noncarbonated natural mineral water after bottling. Seven 16S rRNA gene libraries, comprising 108 clones in total, were constructed from water samples taken at various days after bottling and from two different bottle sizes. Sequence analyses identified 11 operational taxonomic units (OTUs), all but one affiliated with the betaproteobacterial order Burkholderiales (6 OTUs) or the class Alphaproteobacteria (4 OTUs). Fluorescence in situ hybridization (FISH) was applied in combination with DAPI (4′,6′-diamidino-2-phenylindole) staining, viability staining, and microscopic counting to quantitatively monitor changes in bacterial community composition. A growth curve similar to that of a bacterium grown in a batch culture was recorded. In contrast to the current perception that Gammaproteobacteria are the most important bacterial components of natural mineral water in bottles, Betaproteobacteria dominated the growing bacterial community and accounted for 80 to 98% of all bacteria detected by FISH in the late-exponential and stationary-growth phases. Using previously published and newly designed genus-specific probes, members of the betaproteobacterial genera Hydrogenophaga, Aquabacterium, and Polaromonas were found to constitute a significant proportion of the bacterial flora (21 to 86% of all bacteria detected by FISH). For the first time, key genera responsible for bacterial growth in a natural mineral water were identified by applying molecular cultivation-independent techniques.


Sign in / Sign up

Export Citation Format

Share Document