scholarly journals The photoprotective properties of α-tocopherol phosphate against long-wave UVA1 (385 nm) radiation in keratinocytes in vitro

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. M. Saleh ◽  
K. P. Lawrence ◽  
S. A. Jones ◽  
A. R. Young

AbstractUVA1 radiation (340–400 nm), especially longwave UVA1 (> 370 nm), is often ignored when assessing sun protection due to its low sunburning potential, but it generates reactive oxygen species (ROS) and is poorly attenuated by sunscreens. This study aimed to investigate if α-tocopherol phosphate, (α-TP) a promising new antioxidant, could protect against long-wave UVA1 induced cell death and scavenge UVA1 induced ROS in a skin cell model. HaCaT keratinocyte cell viability (24 h) was assessed with Alamar Blue and Neutral Red assays. The metabolism of α-TP into α-T, assessed using mass spectrometry, and the compound's radical scavenging efficacy, assessed by the dichlorodihydrofluorescein (H2DCFDA) ROS detection assay, was monitored in HaCaTs. The mechanism of α-TP ROS scavenging was determined using non-cell based DPPH and ORAC assays. In HaCaT keratinocytes, irradiated with 226 J/cm2 UVA1 in low-serum (2%, starved) cell culture medium, pretreatment with 80 µM α-TP significantly enhanced cell survival (88%, Alamar Blue) compared to control, whereas α-T pre-treatment had no effect survival (70%, Alamar Blue). Pre-treatment of cells with 100 μM α-TP or 100 μM α-T before 57 J/cm2 UVA1 also significantly reduced ROS generation over 2 h (24.1% and 23.9% respectively) compared to the control and resulted in α-TP bioconversion into α-T. As α-TP displayed weak antioxidant activity in the cell-free assays thus its photoprotection was assigned to its bioconversion to α-T by cellular phosphatases. Through this mechanism α-TP prevented long-wave UVA1 induced cell death and scavenged UVA1 induced ROS in skin cells when added to the starved cell culture medium before UVA1 exposure by bioconversion into α-T.

2021 ◽  
Author(s):  
Mais Saleh ◽  
Karl P Lawrence ◽  
Stuart. A Jones ◽  
Antony Young

Abstract Long-wave UVA1 radiation (375 nm – 400 nm) is often ignored when assessing sun protection due to its low sunburning potential, but it generates reactive oxygen species (ROS) and is poorly attenuated by sunscreens. This study aimed to investigate if α-tocopherol phosphate, (α-TP) a promising new antioxidant, could protect against long-wave UVA1 induced cell death and scavenge UVA1 induced ROS in a skin cell model. HaCaT keratinocytes cell viability (24 h) was assessed with Alamar blue® and neutral red assays. Radical scavenging efficacy of α-T and α-TP in vitro was monitored by the dichlorodihydrofluorescein (H2DCFDA) ROS detection assay over 2 h. The mechanism of α-TP ROS scavenging was determined using chemical DPPH and ORAC assays.In HaCaT keratinocytes, irradiated with 226 J/cm2 UVA1 in low-serum (2%, starved) cell culture medium, pretreatment with 80 µM α-TP significantly enhanced cell survival (88%, Alamar blue) compared to control, whereas α-T pre-treatment had no effect survival (70%, Alamar blue). Pre-treatment of cells with 100 μM α-TP or 100 μM α-T before 57 J/cm2 UVA1 also significantly reduced ROS generation over 2 h (24.1% and 23.9% respectively) compared to the control. However, α-TP displayed weak antioxidant activity in cell free assays suggesting its photoprotection was due to bioconversion to α-T by cellular phosphatases.Treatment with α-TP prevented long-wave UVA1 induced cell death and scavenged UVA1 induced ROS in skin cells when added to the starved cell culture medium before UVA1 exposure by bioconversion into α-T.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andreanne G. Vasconcelos ◽  
Ana Luisa A. N. Barros ◽  
Wanessa F. Cabral ◽  
Daniel C. Moreira ◽  
Ingrid Gracielle M. da Silva ◽  
...  

Abstract Background Self-emulsifying drug delivery systems (SEDDSs) have attracted attention because of their effects on solubility and bioavailability of lipophilic compounds. Herein, a SEDDS loaded with lycopene purified from red guava (nanoLPG) was produced. The nanoemulsion was characterized using dynamic light scattering (DLS), zeta potential measurement, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), lycopene content quantification, radical scavenging activity and colloidal stability in cell culture medium. Then, in vivo toxicity and tissue distribution in orally treated mice and cytotoxicity on human prostate carcinoma cells (DU-145) and human peripheral blood mononuclear cells (PBMC) were evaluated. Results NanoLPG exhibited physicochemical properties with a size around 200 nm, negative zeta-potential, and spherical morphology. The size, polydispersity index, and zeta potential parameters suffered insignificant alterations during the 12 month storage at 5 °C, which were associated with lycopene stability at 5 °C for 10 months. The nanoemulsion showed partial aggregation in cell culture medium at 37 °C after 24 h. NanoLPG at 0.10 mg/mL exhibited radical scavenging activity equivalent to 0.043 ± 0.002 mg Trolox/mL. The in vivo studies did not reveal any significant changes in clinical, behavioral, hematological, biochemical, and histopathological parameters in mice orally treated with nanoLPG at 10 mg/kg for 28 days. In addition, nanoLPG successfully delivered lycopene to the liver, kidney and prostate in mice, improved its cytotoxicity against DU-145 prostate cancer cells—probably by pathway independent on classical necrosis and apoptosis—and did not affect PBMC viability. Conclusions Thus, nanoLPG stands as a promising and biosafe lycopene delivery system for further development of nanotechnology-based health products. Graphical Abstract


2020 ◽  
Author(s):  
Federica Saponaro ◽  
Marco Borsò ◽  
Sara Verlotta ◽  
Lavinia Bandini ◽  
Alessandro Saba ◽  
...  

2013 ◽  
Vol 133 (5) ◽  
pp. 278-285
Author(s):  
Norimitsu Takamura ◽  
Douyan Wang ◽  
Takao Satoh ◽  
Takao Namihira ◽  
Hisato Saitoh ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204173142110086
Author(s):  
Jun Yong Kim ◽  
Won-Kyu Rhim ◽  
Yong-In Yoo ◽  
Da-Seul Kim ◽  
Kyoung-Won Ko ◽  
...  

Exosomes derived from mesenchymal stem cells (MSCs) have been studied as vital components of regenerative medicine. Typically, various isolation methods of exosomes from cell culture medium have been developed to increase the isolation yield of exosomes. Moreover, the exosome-depletion process of serum has been considered to result in clinically active and highly purified exosomes from the cell culture medium. Our aim was to compare isolation methods, ultracentrifuge (UC)-based conventional method, and tangential flow filtration (TFF) system-based method for separation with high yield, and the bioactivity of the exosome according to the purity of MSC-derived exosome was determined by the ratio of Fetal bovine serum (FBS)-derived exosome to MSC-derived exosome depending on exosome depletion processes of FBS. The TFF-based isolation yield of exosome derived from human umbilical cord MSC (UCMSC) increased two orders (92.5 times) compared to UC-based isolation method. Moreover, by optimizing the process of depleting FBS-derived exosome, the purity of UCMSC-derived exosome, evaluated using the expression level of MSC exosome surface marker (CD73), was about 15.6 times enhanced and the concentration of low-density lipoprotein-cholesterol (LDL-c), known as impurities resulting from FBS, proved to be negligibly detected. The wound healing and angiogenic effects of highly purified UCMSC-derived exosomes were improved about 23.1% and 71.4%, respectively, with human coronary artery endothelial cells (HCAEC). It suggests that the defined MSC exosome with high yield and purity could increase regenerative activity.


Sign in / Sign up

Export Citation Format

Share Document