scholarly journals Machining feature recognition based on deep neural networks to support tight integration with 3D CAD systems

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Changmo Yeo ◽  
Byung Chul Kim ◽  
Sanguk Cheon ◽  
Jinwon Lee ◽  
Duhwan Mun

AbstractRecently, studies applying deep learning technology to recognize the machining feature of three-dimensional (3D) computer-aided design (CAD) models are increasing. Since the direct utilization of boundary representation (B-rep) models as input data for neural networks in terms of data structure is difficult, B-rep models are generally converted into a voxel, mesh, or point cloud model and used as inputs for neural networks for the application of 3D models to deep learning. However, the model’s resolution decreases during the format conversion of 3D models, causing the loss of some features or difficulties in identifying areas of the converted model corresponding to a specific face of the B-rep model. To solve these problems, this study proposes a method enabling tight integration of a 3D CAD system with a deep neural network using feature descriptors as inputs to neural networks for recognizing machining features. Feature descriptor denotes an explicit representation of the main property items of a face. We constructed 2236 data to train and evaluate the deep neural network. Of these, 1430 were used for training the deep neural network, and 358 were used for validation. And 448 were used to evaluate the performance of the trained deep neural network. In addition, we conducted an experiment to recognize a total of 17 types (16 types of machining features and a non-feature) from the B-rep model, and the types for all 75 test cases were successfully recognized.

Author(s):  
Ankita Singh ◽  
◽  
Pawan Singh

The Classification of images is a paramount topic in artificial vision systems which have drawn a notable amount of interest over the past years. This field aims to classify an image, which is an input, based on its visual content. Currently, most people relied on hand-crafted features to describe an image in a particular way. Then, using classifiers that are learnable, such as random forest, and decision tree was applied to the extract features to come to a final decision. The problem arises when large numbers of photos are concerned. It becomes a too difficult problem to find features from them. This is one of the reasons that the deep neural network model has been introduced. Owing to the existence of Deep learning, it can become feasible to represent the hierarchical nature of features using a various number of layers and corresponding weight with them. The existing image classification methods have been gradually applied in real-world problems, but then there are various problems in its application processes, such as unsatisfactory effect and extremely low classification accuracy or then and weak adaptive ability. Models using deep learning concepts have robust learning ability, which combines the feature extraction and the process of classification into a whole which then completes an image classification task, which can improve the image classification accuracy effectively. Convolutional Neural Networks are a powerful deep neural network technique. These networks preserve the spatial structure of a problem and were built for object recognition tasks such as classifying an image into respective classes. Neural networks are much known because people are getting a state-of-the-art outcome on complex computer vision and natural language processing tasks. Convolutional neural networks have been extensively used.


Author(s):  
Huixin Yang ◽  
Xiang Li ◽  
Wei Zhang

Abstract Despite the rapid development of deep learning-based intelligent fault diagnosis methods on rotating machinery, the data-driven approach generally remains a "black box" to researchers, and its internal mechanism has not been sufficiently understood. The weak interpretability significantly impedes further development and applications of the effective deep neural network-based methods. This paper contributes efforts to understanding the mechanical signal processing of deep learning on the fault diagnosis problems. The diagnostic knowledge learned by the deep neural network is visualized using the neuron activation maximization and the saliency map methods. The discriminative features of different machine health conditions are intuitively observed. The relationship between the data-driven methods and the well-established conventional fault diagnosis knowledge is confirmed by the experimental investigations on two datasets. The results of this study can benefit researchers on understanding the complex neural networks, and increase the reliability of the data-driven fault diagnosis model in the real engineering cases.


Author(s):  
A. Sokolova ◽  
A. Konushin

In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures, learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their advantages and disadvantages and the transferability of considered methods.


2019 ◽  
Author(s):  
Léon-Charles Tranchevent ◽  
Francisco Azuaje ◽  
Jagath C. Rajapakse

AbstractThe availability of high-throughput omics datasets from large patient cohorts has allowed the development of methods that aim at predicting patient clinical outcomes, such as survival and disease recurrence. Such methods are also important to better understand the biological mechanisms underlying disease etiology and development, as well as treatment responses. Recently, different predictive models, relying on distinct algorithms (including Support Vector Machines and Random Forests) have been investigated. In this context, deep learning strategies are of special interest due to their demonstrated superior performance over a wide range of problems and datasets. One of the main challenges of such strategies is the “small n large p” problem. Indeed, omics datasets typically consist of small numbers of samples and large numbers of features relative to typical deep learning datasets. Neural networks usually tackle this problem through feature selection or by including additional constraints during the learning process.We propose to tackle this problem with a novel strategy that relies on a graph-based method for feature extraction, coupled with a deep neural network for clinical outcome prediction. The omics data are first represented as graphs whose nodes represent patients, and edges represent correlations between the patients’ omics profiles. Topological features, such as centralities, are then extracted from these graphs for every node. Lastly, these features are used as input to train and test various classifiers.We apply this strategy to four neuroblastoma datasets and observe that models based on neural networks are more accurate than state of the art models (DNN: 85%-87%, SVM/RF: 75%-82%). We explore how different parameters and configurations are selected in order to overcome the effects of the small data problem as well as the curse of dimensionality. Our results indicate that the deep neural networks capture complex features in the data that help predicting patient clinical outcomes.


Author(s):  
Dong-Dong Chen ◽  
Wei Wang ◽  
Wei Gao ◽  
Zhi-Hua Zhou

Deep neural networks have witnessed great successes in various real applications, but it requires a large number of labeled data for training. In this paper, we propose tri-net, a deep neural network which is able to use massive unlabeled data to help learning with limited labeled data. We consider model initialization, diversity augmentation and pseudo-label editing simultaneously. In our work, we utilize output smearing to initialize modules, use fine-tuning on labeled data to augment diversity and eliminate unstable pseudo-labels to alleviate the influence of suspicious pseudo-labeled data. Experiments show that our method achieves the best performance in comparison with state-of-the-art semi-supervised deep learning methods. In particular, it achieves 8.30% error rate on CIFAR-10 by using only 4000 labeled examples.


2019 ◽  
Vol 12 (S8) ◽  
Author(s):  
Léon-Charles Tranchevent ◽  
Francisco Azuaje ◽  
Jagath C. Rajapakse

Abstract Background The availability of high-throughput omics datasets from large patient cohorts has allowed the development of methods that aim at predicting patient clinical outcomes, such as survival and disease recurrence. Such methods are also important to better understand the biological mechanisms underlying disease etiology and development, as well as treatment responses. Recently, different predictive models, relying on distinct algorithms (including Support Vector Machines and Random Forests) have been investigated. In this context, deep learning strategies are of special interest due to their demonstrated superior performance over a wide range of problems and datasets. One of the main challenges of such strategies is the “small n large p” problem. Indeed, omics datasets typically consist of small numbers of samples and large numbers of features relative to typical deep learning datasets. Neural networks usually tackle this problem through feature selection or by including additional constraints during the learning process. Methods We propose to tackle this problem with a novel strategy that relies on a graph-based method for feature extraction, coupled with a deep neural network for clinical outcome prediction. The omics data are first represented as graphs whose nodes represent patients, and edges represent correlations between the patients’ omics profiles. Topological features, such as centralities, are then extracted from these graphs for every node. Lastly, these features are used as input to train and test various classifiers. Results We apply this strategy to four neuroblastoma datasets and observe that models based on neural networks are more accurate than state of the art models (DNN: 85%-87%, SVM/RF: 75%-82%). We explore how different parameters and configurations are selected in order to overcome the effects of the small data problem as well as the curse of dimensionality. Conclusions Our results indicate that the deep neural networks capture complex features in the data that help predicting patient clinical outcomes.


Author(s):  
Weijuan Cao ◽  
Trevor Robinson ◽  
Yang Hua ◽  
Flavien Boussuge ◽  
Andrew R. Colligan ◽  
...  

Abstract In this paper, the application of deep learning methods to the task of machining feature recognition in CAD models is studied. Four contributions are made: 1. An automatic method to generate large datasets of 3D CAD models is proposed, where each model contains multiple machining features with face labels. 2. A concise and informative graph representation for 3D CAD models is presented. This is shown to be applicable to graph neural networks. 3. The graph representation is compared with voxels on their performance of training deep neural networks to segment 3D CAD models. 4. Experiments are also conducted to evaluate the effectiveness of graph-based deep learning for interacting feature recognition. Results show that the proposed graph representation is a more efficient representation of 3D CAD models than voxels for deep learning. It is also shown that graph neural networks can be used to recognize individual features on the model and also identify complex interacting features.


2021 ◽  
Vol 13 (14) ◽  
pp. 2723
Author(s):  
Naisen Yang ◽  
Hong Tang

Satellite images are always partitioned into regular patches with smaller sizes and then individually fed into deep neural networks (DNNs) for semantic segmentation. The underlying assumption is that these images are independent of one another in terms of geographic spatial information. However, it is well known that many land-cover or land-use categories share common regional characteristics within a certain spatial scale. For example, the style of buildings may change from one city or country to another. In this paper, we explore some deep learning approaches integrated with geospatial hash codes to improve the semantic segmentation results of satellite images. Specifically, the geographic coordinates of satellite images are encoded into a string of binary codes using the geohash method. Then, the binary codes of the geographic coordinates are fed into the deep neural network using three different methods in order to enhance the semantic segmentation ability of the deep neural network for satellite images. Experiments on three datasets demonstrate the effectiveness of embedding geographic coordinates into the neural networks. Our method yields a significant improvement over previous methods that do not use geospatial information.


2018 ◽  
Vol 16 (06) ◽  
pp. 895-919 ◽  
Author(s):  
Ding-Xuan Zhou

Deep learning based on structured deep neural networks has provided powerful applications in various fields. The structures imposed on the deep neural networks are crucial, which makes deep learning essentially different from classical schemes based on fully connected neural networks. One of the commonly used deep neural network structures is generated by convolutions. The produced deep learning algorithms form the family of deep convolutional neural networks. Despite of their power in some practical domains, little is known about the mathematical foundation of deep convolutional neural networks such as universality of approximation. In this paper, we propose a family of new structured deep neural networks: deep distributed convolutional neural networks. We show that these deep neural networks have the same order of computational complexity as the deep convolutional neural networks, and we prove their universality of approximation. Some ideas of our analysis are from ridge approximation, wavelets, and learning theory.


2021 ◽  
Vol 11 (20) ◽  
pp. 9703
Author(s):  
Han-joon Kim ◽  
Pureum Lim

Most text classification systems use machine learning algorithms; among these, naïve Bayes and support vector machine algorithms adapted to handle text data afford reasonable performance. Recently, given developments in deep learning technology, several scholars have used deep neural networks (recurrent and convolutional neural networks) to improve text classification. However, deep learning-based text classification has not greatly improved performance compared to that of conventional algorithms. This is because a textual document is essentially expressed as a vector (only), albeit with word dimensions, which compromises the inherent semantic information, even if the vector is (appropriately) transformed to add conceptual information. To solve this `loss of term senses’ problem, we develop a concept-driven deep neural network based upon our semantic tensor space model. The semantic tensor used for text representation features a dependency between the term and the concept; we use this to develop three deep neural networks for text classification. We perform experiments using three standard document corpora, and we show that our proposed methods are superior to both traditional and more recent learning methods.


Sign in / Sign up

Export Citation Format

Share Document