scholarly journals Preparation and evaluation of crocin loaded in nanoniosomes and their effects on ischemia–reperfusion injuries in rat kidney

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reyhaneh Naderi ◽  
Abbas Pardakhty ◽  
Mohammad Farajli Abbasi ◽  
Mehdi Ranjbar ◽  
Maryam Iranpour

AbstractAs a powerful antioxidant compound, crocin can partially protect against renal ischemia/reperfusion (I/R) injuries. The encapsulation of components in niosomes (non-ionic surfactant-based vesicle) as nano-sized carrier systems has been proposed as they improve the solubility, stability, and bioavailability of drugs. Herein, the encapsulation of crocin in nano-niosomes and the effects of crocin-loaded nano-niosomes on renal ischemia/reperfusion-induced damages were evaluated. Nano-niosomes containing crocin were formulated by a modified heating method and were characterized for their physicochemical characteristics. Ischemia was induced by clamping the renal artery for 30 min followed by 1 or 24 h of reperfusion. Rats received an intra-arterial injection of nano-niosome-loaded crocin at the outset of reperfusion. Blood samples were taken after reperfusion to measure urea, creatinine (Cr), malondialdehyde (MDA), and superoxide dismutase (SOD) activity. The right kidney was removed for histological examination. The results showed that crocin-contain nano-niosomes have appropriate size and morphology, acceptable encapsulation efficiency, and a proper release pattern of crocin. I/R enhanced creatinine (Cr), urea, and malondialdehyde (MDA) serum levels and reduced SOD activity and histological damages in the renal tissue.


2016 ◽  
Vol 43 (5) ◽  
pp. 348-353 ◽  
Author(s):  
IGOR NAGAI YAMAKI ◽  
RUY VICTOR SIMÕES PONTES ◽  
FELIPE LOBATO DA SILVA COSTA ◽  
VITOR NAGAI YAMAKI ◽  
RENAN KLEBER COSTA TEIXEIRA ◽  
...  

ABSTRACT Objective: to evaluate the effects of blocking the regulation of vascular tone on the ischemia and reperfusion syndrome in rats through the use of lidocaine in the postconditioning technique. Methods: we randomized 35 rats into seven groups of five animals: Group 1- Control; Group 2- Ischemia and Reperfusion; Group 3- Ischemia, Reperfusion and Saline; Group 4- Ischemic Postconditioning; Group 5- Ischemic Postconditioning and Saline; Group 6- Lidocaine; Group 7- Ischemic Postconditioning and Lidocaine. Except for the control group, all the others were submitted to renal ischemia for 30 minutes. In postconditioning groups, we performed ischemia and reperfusion cycles of five minutes each, applied right after the main ischemia. In saline and lidocaine groups, we instilled the substances at a rate of two drops per minute. To compare the groups, we measured serum levels of urea and creatinine and also held renal histopathology. Results: The postconditioning and postconditioning + lidocaine groups showed a decrease in urea and creatinine values. The lidocaine group showed only a reduction in creatinine values. In histopathology, only the groups submitted to ischemic postconditioning had decreased degree of tubular necrosis. Conclusion: Lidocaine did not block the effects of postconditioning on renal ischemia reperfusion syndrome, and conferred better glomerular protection when applied in conjunction with ischemic postconditioning.



2019 ◽  
Vol 5 (2) ◽  
pp. e19-e19
Author(s):  
Leila Mohmoodnia ◽  
Sarina Safari Ahmadvand ◽  
Sahar Koushki ◽  
Behrooz Farzan ◽  
Sajad Papi ◽  
...  

Introduction: Renal ischemia reperfusion injury is one of the main causes of acute renal failure, which is associated with high mortality. Tissue damage caused by ischemia-reperfusion occurs due to the release of oxygen free radicals. Type I angiotensin receptor antagonists such as valsartan can be useful in the treatment of chronic kidney disease and hypertension. Objectives: We aimed to evaluate the protective effect of valsartan against renal ischemia reperfusion via antioxidant property and nitric oxide (NO) signaling pathway. Materials and Methods: Fifty male Wistar rats (220±10 g) were randomly divided into five groups as follows: Group 1; healthy rats without ischemia-reperfusion (control group). Group 2; rats with ischemia reperfusion (IR) (IR control group). Group 3; rats with IR which received 30 mg/kg valsartan orally. Group 4; rats with IR which received 30 mg/kg valsartan together with 40 mg/kg L-NAME. Group 5; rats with IR which received 30 mg/kg valsartan together with 40 mg/kg L-arginine. To induce ischemia-reperfusion, rats were anesthetized with thiopental and underwent surgery. Then, we induced ischemia with blocking blood vessels for 45 minutes by clamping. Biochemical parameters including urea and creatinine were measured using commercial kits. Oxidative stress and inflammatory parameters were measured by ELISA method. Renal tissues were stained with hematoxylin and eosin. Finally, the Kolmogorov-Smirnov test was used to determine the normal distribution of data. Results: The findings of this study indicated that treatment with valsartan and valsartan plus L-arginine leads to significant decrease in the serum levels of creatinine, urea, and albumin/creatinine, malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in contrast to IR control group which has increased level of these parameters. On the other hand, treatment with valsartan and valsartan plus L-arginine lead to increase in the serum levels of glutathione peroxidase (GPX), in contrast to ischemia reperfusion control group. Conclusion: Our data revealed that valsartan as a type I angiotensin receptor antagonist could decrease oxidative stress and inflammation due to renal ischemia reperfusion injury. Hence, valsartan could propose as a therapeutic agent for kidney diseases such as renal ischemia-reperfusion injury regarded to these renoprotective effects.



2020 ◽  
Vol 76 (3) ◽  
pp. 439-451
Author(s):  
Gabor Varga ◽  
Souleiman Ghanem ◽  
Balazs Szabo ◽  
Kitti Nagy ◽  
Noemi Pal ◽  
...  

BACKGROUND: The optimal timing of remote ischemic preconditioning (RIPC) in renal ischemia-reperfusion (I/R) injury is still unclear. We aimed to compare early- and delayed-effect RIPC with hematological, microcirculatory and histomorphological parameters. METHODS: In anesthetized male CrI:WI Control rats (n = 7) laparotomy and femoral artery cannulation were performed. In I/R group (n = 7) additionally a 45-minute unilateral renal ischemia with 120-minute reperfusion was induced. The right hind-limb was strangulated for 3×10 minutes (10-minute intermittent reperfusion) 1 hour (RIPC-1 group, n = 7) or 24 hour (RIPC-24 group, n = 6) prior to the I/R. Hemodynamic, hematological parameters and organs’ surface microcirculation were measured. RESULTS: Control and I/R group had the highest heart rate (p < 0.05 vs base), while the lowest mean arterial pressure (p < 0.05 vs RIPC-1) were found in the RIPC-24 group. The highest microcirculation values were measured in the I/R group (liver: p < 0.05 vs Control). The leukocyte count increased in I/R group (base: p < 0.05 vs Control), also this group’s histological score was the highest (p < 0.05 vs Control). The RIPC-24 group had a significantly lower score than the RIPC-1 (p = 0.0025 vs RIPC-1). CONCLUSION: Renal I/R caused significant functional and morphological, also in the RIPC groups. According to the histological examination the delayed-effect RIPC method was more effective.



2013 ◽  
Vol 22 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Mohammad Reza Ardalan ◽  
Rasoul Estakhri ◽  
Babak Hajipour ◽  
Khalil Ansarin ◽  
Naser Ahmadi Asl ◽  
...  


2018 ◽  
Vol 5 (10) ◽  
pp. 3192
Author(s):  
Nazile Erturk ◽  
Hulya Elbe ◽  
Zumrut Dogan ◽  
Serdar Aktas ◽  
Savas Demirbilek ◽  
...  

Background: There is increasing evidence to suggest that curcumin has antioxidant efficacy in renal ischemia reperfusion injury (IRI). However, it has not been investigated whether this effect is dose-dependent or not.  The aim of this study is to investigate the dose-dependent effect of curcumin on renal IRI in an experimental rat model.Methods: The rats (n=32) were separated into four groups: sham, I/R, I/R+CUR-50, I/R+CUR-100. Rats were subjected to renal ischemia by clamping bilateral renal pedicles for 60 min, and then reperfused for 3 h. Animals in treatment groups received 50 mg/kg/day and 100 mg/kg/day curcumin orally for 5 days before IRI, respectively. MDA, GSH, SOD, and CAT activities were determined in renal tissue. Renal tissue also evaluated histopathologically for mean histopathological damage score.Results: The mean MDA levels in the I/R+CUR-50 and I/R+CUR-100 groups were significantly decreased when compared with the I/R group (p=0.038 and p=0.016, respectively). SOD, CAT and GSH levels of all treatment groups were significantly increased in comparison to that of I/R group (p<0.05, for all). No statistically significant difference between treatment groups were detected (p>0.05). In histological examination, the rats treated with curcumin had nearly normal morphology of the kidney.Conclusions: Curcumin significantly ameliorates the damage of renal IRI by its antioxidant activity. We detected the highest intraperitoneal dose of curcumin reduced the IRI induced oxidative stress as 50 mg/kg per day.



2020 ◽  
Vol 92 (4) ◽  
Author(s):  
Hasan Riza Aydin ◽  
Cagri Akin Sekerci ◽  
Ertugrul Yigit ◽  
Hatice Kucuk ◽  
Huseyin Kocakgol ◽  
...  

Aim: To date, various molecules have been investigated to reduce the effect of renal ischemia/reperfusion (I/R) injury. However, none have yet led to clinical use. The present study aimed to investigate the protective effect of cordycepin (C) on renal I/R injury in an experimental rat model. Materials and methods: Twenty-four mature Sprague Dawley female rat was randomly divided into three groups: Sham, I/R, I/R+C. All animals underwent abdominal exploration. To induce I/R injury, an atraumatic vascular bulldog clamp was applied to the right renal pedicle for 60 minutes (ischemia) and later clamp was removed to allow reperfusion in all rats, except for the sham group. In the I/R + C group, 10 mg/kg C was administered intraperitoneally, immediately after reperfusion. After 4 hours of reperfusion, the experiment was terminated with right nephrectomy. Histological studies and biochemical analyses were performed on the right nephrectomy specimens. EGTI (endothelial, glomerular, tubulointerstitial) histopathology scoring and semi-quantitative analysis of renal cortical necrosis were used for histological analyses and superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), total oxidant status (TOS) for biochemical analyses. Results: Histopathological examination of the tissue damage revealed that all kidneys in the sham group were normal. The I/R group had higher histopathological scores than the I/R + C group. In the biochemical analysis of the tissues, SOD, MDA, TOS values were found to be statistically different in the I/R group compared to the I/R + C group (p: 0.004, 0.004, 0.001 respectively). Conclusions: Intraperitoneal cordycepin injection following ischemia preserve renal tissue against oxidative stress in a rat model of renal I/R injury.





2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Qifeng Zhao ◽  
Lan Shao ◽  
Xingti Hu ◽  
Guowei Wu ◽  
Jie Du ◽  
...  

This study aims to investigate the pre- and postconditioning effects of lipoxin A4(LXA4) on myocardial damage caused by ischemia/reperfusion (I/R) injury. Seventy-two rats were divided into 6 groups: sham groups (C1and C2), I/R groups (I/R1and I/R2), and I/R plus LXA4preconditioning and postconditioning groups (LX1and LX2). The serum levels of IL-1β, IL-6, IL-8, IL-10, TNF-α, and cardiac troponin I (cTnI) were measured. The content and the activity of Na+-K+-ATPase as well as the superoxide dismutase (SOD), and malondialdehyde (MDA) levels were determined. Along with the examination of myocardium ultrastructure and ventricular arrhythmia scores (VAS), connexin 43 (Cx43) expression were also detected. Lower levels of IL-1β, IL-6, IL-8, TNF-α, cTnI, MDA content, and VAS and higher levels of IL-10, SOD activity, Na+-K+-ATPase content and activity, and Cx43 expression appeared in LX groups than I/R groups. Besides, H&E staining, TEM examination as well as analysis of gene, and protein confirmed that LXA4preconditioning was more effective than postconditioning in preventing arrhythmogenesis via the upregulation of Cx43. That is, LXA4postconditioning had better protective effect on Na+-K+-ATPase and myocardial ultrastructure.



2018 ◽  
Vol 8 (2) ◽  
pp. 91-97 ◽  
Author(s):  
Hassan Ahmadvand ◽  
Esmaeel Babaeenezhad ◽  
Maryam Nasri ◽  
Leila Jafaripour ◽  
Reza Mohammadrezaei Khorramabadi

Introduction: Glutathione (GSH) protects the tissue and cell from oxidative injury. Objectives: In the current study, we investigated the possible effects of GSH on liver markers, oxidative stress and inflammatory indices in rat with renal ischemia reperfusion (RIR) injury. Materials and Methods: Twenty-four adult male Wistar rats were divided into 3 groups (n=8). Group I (the control group), group II (the RIR group) received saline (0.25 mL/d, intraperitoneally; i.p.), group III as the RIR group that received GSH (100 mg/kg/d, i.p.). The treatment with saline or GSH began daily 14 days before RIR induction. RIR was induced by clamping renal pedicles for 45 minutes and 24 hours of reperfusion. Results: RIR significantly increased the serum level of nitric oxide (NO), the serum activities of aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), the serum and renal levels of malondialdehyde (MDA), and the serum activity of myeloperoxidase (MPO). However, RIR significantly decreased the serum and renal levels of GSH, serum paraoxonase 1 (PON1) activity, and the serum and renal activities of catalase (CAT) and glutathione peroxidase (GPX). GSH administration could significantly improve the serum activities of AST, GGT, MPO, GPX and PON1 and serum levels of NO, renal MDA, GSH levels, and serum and also renal CAT activities. Conclusion: Our study indicated that GSH administration ameliorated RIR injury in rats by improving the activities of liver markers and antioxidant enzymes, the levels of MDA, NO, GSH and MPO activity.



Sign in / Sign up

Export Citation Format

Share Document