scholarly journals Environmental optima for an ecosystem engineer: a multidisciplinary trait-based approach

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amelia Curd ◽  
Aurélien Boyé ◽  
Céline Cordier ◽  
Fabrice Pernet ◽  
Louise B. Firth ◽  
...  

AbstractA complex interplay of biotic and abiotic factors underpins the distribution of species and operates across different levels of biological organization and life history stages. Understanding ecosystem engineer reproductive traits is critical for comprehending and managing the biodiversity-rich habitats they create. Little is known about how the reproduction of the reef-forming worm, Sabellaria alveolata, varies across environmental gradients. By integrating broad-scale environmental data with in-situ physiological data in the form of biochemical traits, we identified and ranked the drivers of intraspecific reproductive trait variability (ITV). ITV was highest in locations with variable environmental conditions, subjected to fluctuating temperature and hydrodynamic conditions. Our trait selection pointed to poleward sites being the most physiologically stressful, with low numbers of irregularly shaped eggs suggesting potentially reduced reproductive success. Centre-range individuals allocated the most energy to reproduction, with the highest number of intermediate-sized eggs, whilst equatorward sites were the least physiologically stressful, thus confirming the warm-adapted nature of our model organism. Variation in total egg diameter and relative fecundity were influenced by a combination of environmental conditions, which changed depending on the trait and sampling period. An integrated approach involving biochemical and reproductive traits is essential for understanding macro-scale patterns in the face of anthropogenic-induced climate change across environmental and latitudinal gradients.

1992 ◽  
Vol 6 ◽  
pp. 16-16 ◽  
Author(s):  
Richard K. Bambach ◽  
J. John Sepkoski

The first two ranks above the species level in the traditional Linnean hierarchy — the genus and family — are species based: genera have been erected to unify groups of morphologically similar, closely related species and families have been erected to group genera recognized as closely related because of the shared morphologic characteristics of their species. Diversity patterns of traditional genera and families thus appear congruent with those of species in (a) the Recent (e. g., latitudinal gradients in many groups), (b) compilations of all marine taxa for the entire Phanerozoic (including the stage level), (c) comparisons through time within individual taxa (e. g., Foraminifera, Rugosa, Conodonta), and (d) simulation studies. Genera and families often have a more robust fossil record of diversity than species, especially for poorly sampled groups (e. g., echinoids), because of the range-through record of these polytypic taxa. Simulation studies indicate that paraphyly among traditionally defined taxa is not a fatal problem for diversity studies; in fact, when degradation of the quality of the fossil record is modelled, both diversity and rates of origination and extinction are better represented by including paraphyletic taxa than by restricting data to monophyletic clades. This result underscores the utility of traditional rank-based analyses of the history of diversity.In contrast, the three higher ranks of the Linnean hierarchy — orders, classes and phyla — are defined and recognized by key character complexes assumed to be rooted deep in the developmental program and, therefore, considered to be of special significance. These taxa are unified on the basis of body plan and function, not species morphology. Even if paraphyletic, recognition of such taxa is useful because they represent different functional complexes that reflect biological organization and major evolutionary innovations, often with different ecological capacities. Phanerozoic diversity patterns of orders, classes and phyla are not congruent with those of lower taxa; the higher groups each increased rapidly in the early Paleozoic, during the explosive diversification of body plans in the Cambrian, and then remained stable or declined slightly after the Ordovician. The diversity history of orders superficially resembles that of lower taxa, but this is a result only of ordinal turnover among the Echinodermata coupled with ordinal radiation in the Chordata; it is not a highly damped signal derived from the diversity of species, genera, or families. Despite the stability of numbers among post-Ordovician Linnean higher taxa, the diversity of lower taxa within many of these Bauplan groups fluctuated widely, and these diversity patterns signal embedded ecologic information, such as differences in flexibility in filling or utilizing ecospace.Phylogenetic analysis is vital for understanding the origins and genealogical structure of higher taxa. Only in such fashion can convergence and its implications for ecological constraints and/or opportunities be understood. But blind insistence on the use of monophyletic classifications in all studies would obscure some of the important information contained in traditional taxonomic groupings. The developmental modifications that characterize Linnean higher taxa (and traditionally separate them from their paraphyletic ancestral taxa) provide keys to understanding the role of shifting ecology in macroevolutionary success.


2006 ◽  
Vol 54 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Ricardo S. Absalão ◽  
J. Moreira ◽  
Jesus S. Troncoso

Two benthic mollusc assemblages of the continental shelf on both sides of the Atlantic Ocean, a tropical one in Rio de Janeiro, Brazil, and another, temperate, in Galicia, Spain were investigated, with a view to finding common environmental descriptors which would explain, on a macro-scale, why these assemblages are there. Both of the assemblages concerned show approximately the same species richness, about 150 taxa each. The molluscan fauna of both regions live on sandy sediments. The Galician assemblages are at about 2-12 m depth, while those in Rio de Janeiro are at about 10-40 m depth. Malacological assemblages were defined through Cluster Analysis and Multiple Discriminant Analysis of the environmental data showed that each assemblage has its own environmental space. These assemblages have no species in common, but show the same phenological characters associated with each sedimentological facies. The same set of environmental variables (median sediment grain size, skewness, kurtosis, sorting, fine and medium sand fractions and depth) were selected as controlling these assemblages, suggesting that they play their role as general environmental descriptors.


2018 ◽  
Vol 43 (1) ◽  
pp. 24-45 ◽  
Author(s):  
Hannah R Miller ◽  
Stuart N Lane

Matthews’ 1992 geoecological model of vegetation succession within glacial forefields describes how following deglaciation the landscape evolves over time as the result of both biotic and abiotic factors, with the importance of each depending on the level of environmental stress within the system. We focus in this paper on how new understandings of abiotic factors and the potential for biogeomorphic feedbacks between abiotic and biotic factors makes further development of this model important. Disturbance and water dynamics are two abiotic factors that have been shown to create stress gradients that can drive early ecosystem succession. The subsequent establishment of microbial communities and vegetation can then result in biogeomorphic feedbacks via ecosystem engineering that influence the role of disturbance and water dynamics within the system. Microbes can act as ecosystem engineers by supplying nutrients (via remineralization of organic matter and nitrogen fixation), enhancing soil development, either decreasing (encouraging weathering) or increasing (binding sediment grains) geomorphic stability, and helping retain soil moisture. Vegetation can act as an ecosystem engineer by fixing nitrogen, enhancing soil development, modifying microbial community structure, creating seed banks, and increasing geomorphic stability. The feedbacks between vegetation and water dynamics in glacial forefields are still poorly studied. We propose a synthesized model of ecosystem succession within glacial forefields that combines Matthews’ initial geoecological model and Corenblit's model to illustrate how gradients in environmental stress combined with successional time drive the balance between abiotic and biotic factors and ultimately determine the successional stage and potential for biogeomorphic feedbacks.


Author(s):  
Alexandra Leitao BenHamadou1 ◽  
Zenaba Khatir ◽  
Noora Al-Shamary ◽  
Hassan Hassan ◽  
Zainab Hizan ◽  
...  

The NPRP9-394-1-090 project “Pearl Oyster: from national icon to guardian of Qatar's marine environment” had as main aim to develop and apply an integrated suite of chemical and biological methods as early warning tools to assess the “health” of Qatar’s marine environment. The central theme consisted in an investigative monitoring program around the use of the pearl oyster, Pictada imbricata radiata, as a sentinel or guardian species. We have characterized the main environmental contaminants of concern at a selected number of sites around the Qatari coast (UmmBab, Al Khor, Al Wakra and Simaisma), during 2 years, in summer and winter. Potential ecological effects of contaminants (targeted and untargeted) were investigated at different biological organization levels (gene, chromosome, cell, individual, population), through a multidisciplinary approach, using classical and genotoxicological endpoints, integrative histopathology and transcriptomic responses to the different environmental stresses. To our knowledge, this is the first time an integrated approach connecting all these disciplines has been applied in the Qatari marine environment. We present here the main results, of this 3 years project, obtained in all different disciplinary approaches. The results of this project will leave a legacy of resources for future Qatari researchers, including an open access transcriptome data base and the first description of common pathologies observed in the pearl oyster P. i. radiata. Moreover, they will also represent a sound science-based baseline data essential for conservation and management planning, by integration of the data from all the different disciplines applied in the project to assess the potential ecological effects of contaminants at different biological levels.


2021 ◽  
Vol 21 (7) ◽  
pp. 2075-2091
Author(s):  
Elias de Korte ◽  
Bruno Castelle ◽  
Eric Tellier

Abstract. A Bayesian network (BN) approach is used to model and predict shore-break-related injuries and rip-current drowning incidents based on detailed environmental conditions (wave, tide, weather, beach morphology) on the high-energy Gironde coast, southwest France. Six years (2011–2017) of boreal summer (15 June–15 September) surf zone injuries (SZIs) were analysed, comprising 442 (fatal and non-fatal) drownings caused by rip currents and 715 injuries caused by shore-break waves. Environmental conditions at the time of the SZIs were used to train two separate Bayesian networks (BNs), one for rip-current drownings and the other one for shore-break wave injuries. Each BN included two so-called “hidden” exposure and hazard variables, which are not observed yet interact with several of the observed (environmental) variables, which in turn limit the number of BN edges. Both BNs were tested for varying complexity using K-fold cross-validation based on multiple performance metrics. Results show a poor to fair predictive ability of the models according to the different metrics. Shore-break-related injuries appear more predictable than rip-current drowning incidents using the selected predictors within a BN, as the shore-break BN systematically performed better than the rip-current BN. Sensitivity and scenario analyses were performed to address the influence of environmental data variables and their interactions on exposure, hazard and resulting life risk. Most of our findings are in line with earlier SZI and physical hazard-based work; that is, more SZIs are observed for warm sunny days with light winds; long-period waves, with specifically more shore-break-related injuries at high tide and for steep beach profiles; and more rip-current drownings near low tide with near-shore-normal wave incidence and strongly alongshore non-uniform surf zone morphology. The BNs also provided fresh insight, showing that rip-current drowning risk is approximately equally distributed between exposure (variance reduction Vr=14.4 %) and hazard (Vr=17.4 %), while exposure of water user to shore-break waves is much more important (Vr=23.5 %) than the hazard (Vr=10.9 %). Large surf is found to decrease beachgoer exposure to shore-break hazard, while this is not observed for rip currents. Rapid change in tide elevation during days with large tidal range was also found to result in more drowning incidents. We advocate that such BNs, providing a better understanding of hazard, exposure and life risk, can be developed to improve public safety awareness campaigns, in parallel with the development of more skilful risk predictors to anticipate high-life-risk days.


2017 ◽  
Author(s):  
Abdel H. Halloway ◽  
Christopher J. Whelan ◽  
Çağan H. Şekercioğlu ◽  
Joel S. Brown

AbstractAdaptations can be thought of as evolutionary technologies which allow an organism to exploit environments. Among convergent taxa, adaptations may be largely equivalent with the taxa operating in a similar set of environmental conditions, divergent with the taxa operating in different sets of environmental conditions, or superior with one taxon operating within an extended range of environmental conditions than the other. With this framework in mind, we sought to characterize the adaptations of two convergent nectarivorous bird families, the New World hummingbirds (Trochilidae) and Old World sunbirds (Nectariniidae), by comparing their biogeography. Looking at their elevational and latitudinal gradients, hummingbirds not only extend into but also maintain species richness in more extreme environments. We suspect that hummingbirds have a superior key adaptation that sunbirds lack, namely a musculoskeletal architecture that allows for hovering. Through biogeographic comparisons, we have been able to assess and understand adaptations as evolutionary technologies among two convergent bird families, a process that should work for most taxa.


1997 ◽  
Vol 87 (10) ◽  
pp. 1078-1084 ◽  
Author(s):  
T. R. Gottwald ◽  
T. M. Trocine ◽  
L. W. Timmer

An environmental chamber was designed to study aerial release of spores of ascomycetes and hyphomycetes, based on a device developed by C. M. Leach. Relative humidity (RH), temperature, red (660 nm) and infrared (880 nm) light, leaf wetness, wind speed, vibration, and rain events are controlled and monitored within the chamber via an RTC-HC11 real-time controller and data-acquisition system. A BASIC11 computer program is uploaded to and controls the system. The program requests values for environmental parameters that change through time according to user specifications. The controller interacts with a stepper motor, solenoids, and relay switches via a feedback system based on data received from solid-state RH, temperature, and leaf-wetness sensors. The data-acquisition system records environmental data from the chamber in RAM (random access memory) that can be downloaded to a personal computer for correlation with spore-release data. Spores released from fungal specimens on plant tissues and cultures placed in the chamber and subjected to the desired environmental conditions are collected on a continuous volumetric spore trap at an exhaust port from the chamber. The performance of the device was examined by measuring spore release of Mycosphaerella citri, Alternaria solani, and Venturia inaequalis under various environmental conditions.


2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Jônnata Fernandes de Oliveira ◽  
Jean Carlos Dantas de Oliveira ◽  
José Luís Costa Novaes ◽  
Antonia Elissandra Freire de Souza ◽  
Marla Melise Oliveira de Sousa ◽  
...  

Abstract Aim The diet of Plagioscion squamosissimus present in the Santa Cruz Reservoir, Rio Grande do Norte, Brazil, was investigated, evaluating the influences of spatial and temporal variations and abiotic factors in the utilization of food resources. Methods The samplings were performed quarterly between February 2011 and November 2014. Of the 525 specimens captured, 375 presented food items in the stomachs. The diet was determined using: (i) Feeding Index (IAi); (ii) and the graphical interpretation of the food strategy through non-metric multidimensional scaling (NMDS) analyzes, the differences in diet being tested from Permutational Multivariate Analyzes of Variance (PERMANOVA). To verify if environmental variables influence the Canonical Correspondence Analyzes (CCA) were used, using the data from the IAi the environmental data, being the significance of the axes tested through Monte Carlo simulations. Results The species feed mainly on items of animal origin, vegetable being a resource ingested accidentally. The diet was composed of shrimp, fish, insect, mollusk and vegetable, the latter rarely found. The shrimp was the main item (92.57%) and the insects (7.24%) accessory items. Spatial and temporal ordering demonstrated that the species didn’t present variation in diet composition, as well as a low association between diet and environmental variables. Conclusion P. squamosissimus is characterized as carcinophagous, due to the predominance of shrimp in its diet, evidencing that the species is adapted to the conditions offered by the Brazilian semi-arid environment.


2019 ◽  
Vol 105 (1) ◽  
pp. 115-125
Author(s):  
Miguel Ángel Molinero Polo ◽  
Vicente Soler Javaloyes

TT 209 was built in a wadi, a location that means it has been affected by flash floods since ancient times. The team in charge of its study and conservation has initiated a systematic programme of environmental data collection (temperature and relative humidity) in order to understand the natural conditions of the tomb and any transformations caused by archaeological work in its underground chambers, as well as to inform future conservation. These statistics can also be useful for excavation and conservation programmes in nearby tombs whose architectonic structure is similar and have also suffered from exposure to water damage.


2018 ◽  
Vol 47 (1) ◽  
pp. 417-434 ◽  
Author(s):  
Jason M. Kamilar ◽  
Lydia Beaudrot

Environmental stress on primate populations can take many forms. Abiotic factors, such as temperature and precipitation, may directly influence the behavior of primates owing to physiological demands of thermoregulation or through indirect influences on vegetation that primates rely on for food. These effects can also scale up to the macro scale, impacting primate distributions and evolution. Primates also encounter stress during interactions within and between species (i.e., biotic interactions). For example, selective pressure from male-perpetrated infanticide can drive the development of female counterstrategies and can impact life-history traits. Predation on primates can modify group size, ranging behavior, and habitat use. Finally, humans have influenced primate populations for millennia. More recently, hunting, habitat disturbance, disease, and climate change have increased in frequency and severity with detrimental impacts on primate populations worldwide. These effects and recent evidence from camera traps emphasize the importance of maintaining protected areas for conserving primate populations.


Sign in / Sign up

Export Citation Format

Share Document