scholarly journals Three-dimensional morphological analysis of spermatogenesis in aged mouse testes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taito Nakano ◽  
Hiroki Nakata ◽  
Suguru Kadomoto ◽  
Hiroaki Iwamoto ◽  
Hiroshi Yaegashi ◽  
...  

AbstractSpermatogenesis, which is a continuous process from undifferentiated spermatogonia to spermatozoa in the seminiferous tubules, declines with age. To investigate changes in spermatogenesis with aging, we reconstructed the seminiferous tubules of 12 mice aged 12 to 30 months from serial sections and examined age-related and region-specific alterations in the seminiferous epithelium and spermatogenic waves in three dimensions. The basic structure of the seminiferous tubules, including the numbers of tubules, terminating points, branching points, and total tubule length, did not change with age. Age-related alterations in spermatogenesis, primarily assessed by the formation of vacuoles in Sertoli cells, were detected in the seminiferous tubules at 12 months. The proportion of altered tubule segments with impaired spermatogenesis further increased by 24 months, but remained unchanged thereafter. Altered tubule segments were preferentially distributed in tubule areas close to the rete testis and those in the center of the testis. Spermatogenic waves became shorter in length with age. These results provide a basis for examining the decline of spermatogenesis not only with aging, but also in male infertility.

Reproduction ◽  
2017 ◽  
Vol 154 (5) ◽  
pp. 569-579 ◽  
Author(s):  
Hiroki Nakata ◽  
Takahiro Sonomura ◽  
Shoichi Iseki

The aim of the present study was to reconstruct seminiferous tubules and analyze spermatogenic waves in seminiferous epithelia in developing and adult mice using serial paraffin sections and high-performance three-dimensional (3D) reconstruction software. By labeling the basement membrane of seminiferous tubules with fluorescent immunohistochemistry or periodic acid-Schiff-hematoxylin staining, all seminiferous tubules were reconstructed in 9 testes from 9 different mice, 3 each at 0, 21 and 90 days (adult) postpartum. The 3D structure of seminiferous tubules, including the number and length of tubules as well as the number of connections with the rete testis, branching points and blind ends, was assessed accurately. Although tubules showed marked variations among individual mice, their overall structure was regular and retained from newborn to adult mice. Some seminiferous tubules contained inner portions running distant from the testis surface. In a representative testis at 21 days, the sites at which spermatids initially occurred were examined by labeling acrosomes and were found to be preferentially distributed in the upper and medial portions of the testis close to the rete testis. In a representative adult testis, 76 complete waves with an average length of 16.9 mm were found and their directions were analyzed. The methods used in the present study will be useful for investigating the structure and function of seminiferous tubules in mice and humans under normal and pathological conditions, such as infertility.


Author(s):  
Hiroki Nakata ◽  
Taito Nakano ◽  
Shoichi Iseki ◽  
Atsushi Mizokami

We examined if the distribution of impaired or normal spermatogenesis differs along the length of seminiferous tubules in disorders of spermatogenesis. For this purpose, three-dimensional (3D) reconstruction of seminiferous tubules was performed in mice with experimental spermatogenesis disorder induced by intraperitoneal injection of busulfan, and the areas of impaired and normal spermatogenesis were analyzed microscopically. The volume of the testis and length of seminiferous tubules decreased, and the proportion of tubule areas with impaired spermatogenesis increased depending on the dose of busulfan. With the highest dose of busulfan, although the proportion of impaired spermatogenesis was similar among individual seminiferous tubules, it was slightly but significantly higher in shorter tubules and in tubule areas near branching points. The tubule areas with impaired and normal spermatogenesis consisted of many segments of varying lengths. With increasing doses of busulfan, the markedly impaired segments increased in length without changing in number, whereas normal segments, although reduced in number and length, remained even with the highest dose of busulfan. Individual remaining normal segments consisted of several different stages, among which stage I and XII were found at higher frequencies, and stage VI at a lower frequency than expected in normal seminiferous tubules. We also examined if the distribution of impaired or normal spermatogenesis differs among different 3D positions in the testis without considering the course of seminiferous tubules. Although the proportions of impaired spermatogenesis with the minimum dose of busulfan and normal spermatogenesis with the highest dose of busulfan greatly varied by location within a single testis, there were no 3D positions with these specific proportions common to different testes, suggesting that the factors influencing the severity of busulfan-induced spermatogenesis disorder are not fixed in location among individual mice.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Author(s):  
Jonna Nyman

Abstract Security shapes everyday life, but despite a growing literature on everyday security there is no consensus on the meaning of the “everyday.” At the same time, the research methods that dominate the field are designed to study elites and high politics. This paper does two things. First, it brings together and synthesizes the existing literature on everyday security to argue that we should think about the everyday life of security as constituted across three dimensions: space, practice, and affect. Thus, the paper adds conceptual clarity, demonstrating that the everyday life of security is multifaceted and exists in mundane spaces, routine practices, and affective/lived experiences. Second, it works through the methodological implications of a three-dimensional understanding of everyday security. In order to capture all three dimensions and the ways in which they interact, we need to explore different methods. The paper offers one such method, exploring the everyday life of security in contemporary China through a participatory photography project with six ordinary citizens in Beijing. The central contribution of the paper is capturing—conceptually and methodologically—all three dimensions, in order to develop our understanding of the everyday life of security.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2021 ◽  
Author(s):  
Roland Tormey

AbstractStudent-teacher relationships play an important role in both teacher and student experiences in higher education and have been found to be linked to learning, classroom management, and to student absenteeism. Although historically conceptualised in terms of immediacy or distance and measured with reference to behaviours, the growing recognition of the role of emotions and of power—as well as the development of a range of multidimensional models of social relationships—all suggest it is time to re-evaluate how student-teacher relationships are understood. This paper develops a theoretical model of student-teacher affective relationships in higher education based on three dimensions: affection/warmth, attachment/safety, and assertion/power. The three-dimensional model was tested using the Classroom Affective Relationships Inventory (CARI) with data from 851 students. The data supported the use of this multidimensional model for student-teacher relationships with both two- and three-dimensional models of relationships being identified as appropriate. The theoretical development of a multidimensional model and the empirical development of an instrument with which to explore these dimensions has important implications for higher education teachers, administrators and researchers.


Sign in / Sign up

Export Citation Format

Share Document