scholarly journals Medroxyprogesterone acetate inhibits wound closure of human endometrial epithelial cells and stromal fibroblasts in vitro

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mickey V. Patel ◽  
Marta Rodriguez-Garcia ◽  
Zheng Shen ◽  
Charles R. Wira

AbstractMucosal integrity in the endometrium is essential for immune protection. Since breaches or injury to the epithelial barrier exposes underlying tissue and is hypothesized to increase infection risk, we determined whether endogenous progesterone or three exogenous progestins (medroxyprogesterone acetate (MPA), norethindrone (NET), and levonorgestrel (LNG)) used by women as contraceptives interfere with wound closure of endometrial epithelial cells and fibroblasts in vitro. Progesterone and LNG had no inhibitory effect on wound closure by either epithelial cells or fibroblasts. MPA significantly impaired wound closure in both cell types and delayed the reestablishment of transepithelial resistance by epithelial cells. In contrast to MPA, NET selectively decreased wound closure by stromal fibroblasts but not epithelial cells. Following epithelial injury, MPA but not LNG or NET, blocked the injury-induced upregulation of HBD2, a broad-spectrum antimicrobial implicated in wound healing, but had no effect on the secretion of RANTES, CCL20 and SDF-1α. This study demonstrates that, unlike progesterone and LNG, MPA and NET may interfere with wound closure following injury in the endometrium, potentially conferring a higher risk of pathogen transmission. Our findings highlight the importance of evaluating progestins for their impact on wound repair at mucosal surfaces.

Author(s):  
Song Huang ◽  
Samuel Constant ◽  
Barbara De Servi ◽  
Marisa Meloni ◽  
Amina Saaid ◽  
...  

Abstract Purpose Nasal irrigation is an effective method for alleviating several nasal symptoms and regular seawater-based nasal irrigation is useful for maintaining nasal hygiene which is essential for appropriate functioning of the nose and for preventing airborne particles including some pollutants, pathogens, and allergens from moving further in the respiratory system. However, safety studies on seawater-based nasal irrigation are scarce. In this study, the safety and efficacy of a diluted isotonic seawater solution (Stérimar Nasal Hygiene, SNH) in maintaining nasal homeostasis were evaluated in vitro. Methods Safety was assessed by measuring tissue integrity via transepithelial electrical resistance (TEER). Efficacy was measured by mucociliary clearance (MCC), mucin secretion, and tissue re-epithelization (wound repair) assays. All assays were performed using a 3D reconstituted human nasal epithelium model. Results In SNH-treated tissues, TEER values were statistically significantly lower than the untreated tissues; however, the values were above the tissue integrity limit. SNH treatment significantly increased MCC (88 vs. 36 µm/s, p < 0.001) and mucin secretion (1717 vs. 1280 µg/ml, p < 0.001) as compared to untreated cultures. Faster wound closure profile was noted upon pre-SNH treatment as compared to classical isotonic saline solution pre-treatment (90.5 vs. 50.7% wound closure 22 h after wound generation). Conclusion SNH did not compromise the integrity of the nasal epithelium in vitro. Furthermore, SNH was effective for removal of foreign particles through MCC increase and for enhancing wound repair on nasal mucosa.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryo Yokomizo ◽  
Yukiko Fujiki ◽  
Harue Kishigami ◽  
Hiroshi Kishi ◽  
Tohru Kiyono ◽  
...  

Abstract Background Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. Methods We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. Results Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. Conclusions We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called “in vitro implantation”, will be possible therapeutic approaches in fertility treatment.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1413
Author(s):  
Tjessa Bondue ◽  
Fanny O. Arcolino ◽  
Koenraad R. P. Veys ◽  
Oyindamola C. Adebayo ◽  
Elena Levtchenko ◽  
...  

Epithelial cells exfoliated in human urine can include cells anywhere from the urinary tract and kidneys; however, podocytes and proximal tubular epithelial cells (PTECs) are by far the most relevant cell types for the study of genetic kidney diseases. When maintained in vitro, they have been proven extremely valuable for discovering disease mechanisms and for the development of new therapies. Furthermore, cultured patient cells can individually represent their human sources and their specific variants for personalized medicine studies, which are recently gaining much interest. In this review, we summarize the methodology for establishing human podocyte and PTEC cell lines from urine and highlight their importance as kidney disease cell models. We explore the well-established and recent techniques of cell isolation, quantification, immortalization and characterization, and we describe their current and future applications.


2004 ◽  
Vol 287 (2) ◽  
pp. L448-L453 ◽  
Author(s):  
Thomas Geiser ◽  
Masanobu Ishigaki ◽  
Coretta van Leer ◽  
Michael A. Matthay ◽  
V. Courtney Broaddus

Reactive oxygen species (ROS) are released into the alveolar space and contribute to alveolar epithelial damage in patients with acute lung injury. However, the role of ROS in alveolar repair is not known. We studied the effect of ROS in our in vitro wound healing model using either human A549 alveolar epithelial cells or primary distal lung epithelial cells. We found that H2O2 inhibited alveolar epithelial repair in a concentration-dependent manner. At similar concentrations, H2O2 also induced apoptosis, an effect seen particularly at the edge of the wound, leading us to hypothesize that apoptosis contributes to H2O2-induced inhibition of wound repair. To learn the role of apoptosis, we blocked caspases with the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). In the presence of H2O2, zVAD inhibited apoptosis, particularly at the wound edge and, most importantly, maintained alveolar epithelial wound repair. In H2O2-exposed cells, zVAD also maintained cell viability as judged by improved cell spreading and/or migration at the wound edge and by a more normal mitochondrial potential difference compared with cells not treated with zVAD. In conclusion, H2O2 inhibits alveolar epithelial wound repair in large part by induction of apoptosis. Inhibition of apoptosis can maintain wound repair and cell viability in the face of ROS. Inhibiting apoptosis may be a promising new approach to improve repair of the alveolar epithelium in patients with acute lung injury.


1994 ◽  
Vol 267 (6) ◽  
pp. L728-L738 ◽  
Author(s):  
F. Kheradmand ◽  
H. G. Folkesson ◽  
L. Shum ◽  
R. Derynk ◽  
R. Pytela ◽  
...  

Alveolar epithelial type II cells are essential for regenerating an intact alveolar barrier after destruction of type I cells in vivo. The first objective of these experimental studies was to develop an in vitro model to quantify alveolar epithelial cell wound repair. The second objective was to investigate mechanisms of alveolar epithelial cell wound healing by studying the effects of serum and transforming growth factor-alpha (TGF-alpha) on wound closure. Primary cultures of rat alveolar type II cells were prepared by standard methods and grown to form confluent monolayers in 48 h. Then a wound was made by denuding an area (mean initial area of 2.1 +/- 0.6 mm2) of the monolayer. Re-epithelialization of the denuded area over time in the presence or absence of serum was measured using quantitative measurements from time-lapse video microscopy. The half time of wound healing was significantly enhanced in the presence of serum compared with serum-free conditions (2.4 +/- 0.2 vs. 17.4 +/- 0.8 h, P < 0.001). We then tested the hypothesis that TGF-alpha is an important growth factor for stimulating wound repair of alveolar epithelial cells. Exogenous addition of TGF-alpha in serum-free medium resulted in a significantly more rapid wound closure, and, furthermore, the addition of a monoclonal antibody to TGF-alpha in the presence of serum significantly decreased fourfold the rate of wound closure. Measurement of internuclear cell distance confirmed that both cell motility and cell spreading were responsible for closure of the wound. These data demonstrate that 1) the mechanisms of alveolar cell repair can be studied in vitro and that 2) TGF-alpha is a potent growth factor that enhances in vitro alveolar epithelial cell wound closure.


2016 ◽  
Vol 62 (3) ◽  
pp. 271-278 ◽  
Author(s):  
Md. Rashedul ISLAM ◽  
Kazuki YAMAGAMI ◽  
Yuka YOSHII ◽  
Nobuhiko YAMAUCHI

1988 ◽  
Vol 90 (1) ◽  
pp. 73-77
Author(s):  
A. Harris ◽  
L. Coleman

The establishment of a tissue-culture system for epithelial cells derived from human foetal pancreas has recently been reported. Further analyses have now been made on these cells in vitro, together with parallel investigation of the distribution of different cell types within the intact foetal pancreas. Results support the view that the cultured cells are ductal in origin and nature. Pancreatic epithelial cell cultures have also been established from foetuses with cystic fibrosis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariko Moriyama ◽  
Shunya Sahara ◽  
Kaori Zaiki ◽  
Ayumi Ueno ◽  
Koichi Nakaoji ◽  
...  

AbstractWound healing is regulated by complex interactions between the keratinocytes and other cell types including fibroblasts. Recently, adipose-derived mesenchymal stromal/stem cells (ASCs) have been reported to influence wound healing positively via paracrine involvement. However, their roles in keratinocytes are still obscure. Therefore, investigation of the precise effects of ASCs on keratinocytes in an in vitro culture system is required. Our recent data indicate that the epidermal equivalents became thicker on a collagen vitrigel membrane co-cultured with human ASCs (hASCs). Co-culturing the human primary epidermal keratinocytes (HPEK) with hASCs on a collagen vitrigel membrane enhanced their abilities for cell proliferation and adhesion to the membrane but suppressed their differentiation suggesting that hASCs could maintain the undifferentiated status of HPEK. Contrarily, the effects of co-culture using polyethylene terephthalate or polycarbonate membranes for HPEK were completely opposite. These differences may depend on the protein permeability and/or structure of the membrane. Taken together, our data demonstrate that hASCs could be used as a substitute for fibroblasts in skin wound repair, aesthetic medicine, or tissue engineering. It is also important to note that a co-culture system using the collagen vitrigel membrane allows better understanding of the interactions between the keratinocytes and ASCs.


2017 ◽  
Vol 8 (2) ◽  
pp. e2608-e2608 ◽  
Author(s):  
Hongfeng Yuan ◽  
Brandon Tan ◽  
Shou-Jiang Gao

Abstract Tenovin-6 has attracted significant interest because it activates p53 and inhibits sirtuins. It has anti-neoplastic effects on multiple hematopoietic malignancies and solid tumors in both in vitro and in vivo studies. Tenovin-6 was recently shown to impair the autophagy pathway in chronic lymphocytic leukemia cells and pediatric soft tissue sarcoma cells. However, whether tenovin-6 has a general inhibitory effect on autophagy and whether there is any involvement with SIRT1 and p53, both of which are regulators of the autophagy pathway, remain unclear. In this study, we have demonstrated that tenovin-6 increases microtubule-associated protein 1 light chain 3 (LC3-II) level in diverse cell types in a time- and dose-dependent manner. Mechanistically, the increase of LC3-II by tenovin-6 is caused by inhibition of the classical autophagy pathway via impairing lysosomal function without affecting the fusion between autophagosomes and lysosomes. Furthermore, we have revealed that tenovin-6 activation of p53 is cell type dependent, and tenovin-6 inhibition of autophagy is not dependent on its regulatory functions on p53 and SIRT1. Our results have shown that tenovin-6 is a potent autophagy inhibitor, and raised the precaution in interpreting results where tenovin-6 is used as an inhibitor of SIRT1.


Sign in / Sign up

Export Citation Format

Share Document