scholarly journals The distinct effects of P18 overexpression on different stages of hematopoiesis involve TGF-β and NF-κB signaling

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danying Yi ◽  
Lijiao Zhu ◽  
Yuanling Liu ◽  
Jiahui Zeng ◽  
Jing Chang ◽  
...  

AbstractDeficiency of P18 can significantly improve the self-renewal potential of hematopoietic stem cells (HSC) and the success of long-term engraftment. However, the effects of P18 overexpression, which is involved in the inhibitory effects of RUNX1b at the early stage of hematopoiesis, have not been examined in detail. In this study, we established inducible P18/hESC lines and monitored the effects of P18 overexpression on hematopoietic differentiation. Induction of P18 from day 0 (D0) dramatically decreased production of CD34highCD43− cells and derivative populations, but not that of CD34lowCD43− cells, changed the cell cycle status and apoptosis of KDR+ cells and downregulated the key hematopoietic genes at D4, which might cause the severe blockage of hematopoietic differentiation at the early stage. By contrast, induction of P18 from D10 dramatically increased production of classic hematopoietic populations and changed the cell cycle status and apoptosis of CD45+ cells at D14. These effects can be counteracted by inhibition of TGF-β or NF-κB signaling respectively. This is the first evidence that P18 promotes hematopoiesis, a rare property among cyclin-dependent kinase inhibitors (CKIs).

Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4354-4362 ◽  
Author(s):  
Nobuko Uchida ◽  
Annabelle M. Friera ◽  
Dongping He ◽  
Michael J. Reitsma ◽  
Ann S. Tsukamoto ◽  
...  

Abstract The DNA synthesis inhibitor hydroxyurea (HU) was administered to determine whether it induces changes in the cell-cycle status of primitive hematopoietic stem cells (HSCs)/progenitors. Administration of HU to mice leads to bone marrow accumulation of c-kit+Thy-1.1loLin−/loSca-1+ (KTLS) cells in S/G2/M phases of the cell cycle. HU is a relatively nontoxic, reversible cell-cycle agent that can lead to approximately a threefold expansion of KTLS cells in vivo and approximately an eightfold increase in the number of KTLS cells in S/G2/M. HSCs in HU-treated mice have undiminished multilineage long-term and short-term clonal reconstitution activity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 490-490
Author(s):  
Jie Lin Zhang ◽  
Clyde S. Crumpacker ◽  
David T. Scadden

Abstract Hematopoietic stem cells are resistant to HIV-1 infection. We have identified a novel mechanism by which the cyclin-dependent kinase inhibitor, p21Waf1/Cip1/Sdi1 (p21), known for its regulation of stem cell pool size (1,2), restricts HIV-1 infection of primitive hematopoietic cells in a non-cell cycle dependent manner. Knocking down p21 by siRNA increased HIV-1 infection and induction of p21 expression by phorbol ester (TPA) blocked HIV-1 replication. P21 did not affect the overall levels of cDNA synthesis, but significantly blocked viral integration and resulted in marked increase in 2-LTR circles, a surrogate marker of abortive integration. Consistent with these observations, p21 coimmunoprecipitated with viral integrase and both were detected in the preintegration complex (PIC). Furthermore, silencing p27Kip1 and p18INK4C, cyclin dependent kinase inhibitors related to p21 that affect cell cycle, revealed no impact on viral DNA integration. A closely related dual-tropic lentivirus with a distinct integrase, SIVmac-251 and the other cell-intrinsic inhibitors of HIV-1, Trim5a, PML, Murr1, and IFN-a were unaffected by p21. These results indicate a new function for p21, participating in prevention of HIV integration into the cellular genome. Therefore p21 is an endogenous cellular component in stem cells that provides a unique molecular barrier to HIV-1 infection and may explain the basis for these cells being an uninfected ‘sanctuary’ in HIV disease.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4354-4362 ◽  
Author(s):  
Nobuko Uchida ◽  
Annabelle M. Friera ◽  
Dongping He ◽  
Michael J. Reitsma ◽  
Ann S. Tsukamoto ◽  
...  

The DNA synthesis inhibitor hydroxyurea (HU) was administered to determine whether it induces changes in the cell-cycle status of primitive hematopoietic stem cells (HSCs)/progenitors. Administration of HU to mice leads to bone marrow accumulation of c-kit+Thy-1.1loLin−/loSca-1+ (KTLS) cells in S/G2/M phases of the cell cycle. HU is a relatively nontoxic, reversible cell-cycle agent that can lead to approximately a threefold expansion of KTLS cells in vivo and approximately an eightfold increase in the number of KTLS cells in S/G2/M. HSCs in HU-treated mice have undiminished multilineage long-term and short-term clonal reconstitution activity.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1157 ◽  
Author(s):  
Eugene Chang ◽  
Choon Kim

Obesity is recognized as a worldwide health crisis. Obesity and its associated health complications such as diabetes, dyslipidemia, hypertension, and cardiovascular diseases impose a big social and economic burden. In an effort to identify safe, efficient, and long-term effective methods to treat obesity, various natural products with potential for inhibiting adipogenesis were revealed. This review aimed to discuss the molecular mechanisms underlying adipogenesis and the inhibitory effects of various phytochemicals, including those from natural sources, on the early stage of adipogenesis. We discuss key steps (proliferation and cell cycle) and their regulators (cell-cycle regulator, transcription factors, and intracellular signaling pathways) at the early stage of adipocyte differentiation as the mechanisms responsible for obesity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2337-2337
Author(s):  
Takao Sudo ◽  
Takafumi Yokota ◽  
Tatsuki Sugiyama ◽  
Tatsuro Ishida ◽  
Yusuke Satoh ◽  
...  

Abstract Abstract 2337 Although hematopoietic stem cells (HSC) are characterized with self-renewal and pluri-potential, their cell-cycle status and differentiating behavior do fluctuate according to the physiological requirement. In the homeostatic state of adult bone marrow (BM), HSC are likely to be quiescent so that they can evade exhaustion or mutation. However, when BM is injured by irradiation and/or anti-cancer drugs, HSC need to proliferate to restore normal hematopoiesis. Then, after re-establishment of homeostasis, activated HSC return to be quiescent. Molecular crosstalk between HSC and BM microenvironment is thought to elaborately control the status of HSC, but precise mechanisms remain unknown. If the conversion of HSC between dormancy and self-renewal could be accurately monitored, the method should be useful to understand how the HSC status is regulated. Our previous study demonstrated that endothelial cell-selective adhesion molecule (ESAM) is a useful marker for murine HSC throughout life. In the present study, we examined if the ESAM level reflects the HSC status between dormancy and activation. Firstly we monitored ESAM levels of the Lin− Sca1+ c-kit+ (LSK) HSC-enriched fraction in BM after a single 5-FU injection (150 mg/kg) by flow cytometry. From 2 to 9 days after the 5-FU injection, ESAM levels on the LSK fraction remarkably increased. Indeed, the mean fluorescence intensity of ESAM expression on HSC increased by 9.6-fold in 5 days after 5-FU injection. The increase of ESAM expression was more drastic than that of other endothelial-related markers such as CD34 (1.6-fold). After reaching to the maximum peak around day 5–6, ESAM level gradually decreased and returned to the homeostatic level by 12 days after 5-FU. Interestingly, the ESAM up-regulation on HSC was abrogated when inhibitory drugs for NF-kB and topoisomerase-II were given after 5-FU injection. Furthermore, short-term BrdU exposure proved that the ESAMhi cells after 5-FU treatment are actually active in the cell cycle status. Then, the immuno-histochemical analyses were performed to locate the activated HSC in 5-FU treated BM. Since more than 80% of the Lin− ESAMhi Sca1+ cells were found within 20 μm from vascular endothelium, the activated HSC seemed to be intimate with endothelial cells and/or vascular-related cells. Next, we performed functional assessments of the ESAMlow LSK and ESAMhi LSK fractions sorted from 5-FU-treated BM. In methylcellulose cultures, while both fractions contained a number of hematopoietic progenitors, CFU-Mix, primitive multipotent progenitors, were significantly enriched in the ESAMhi fraction (10±0 vs. 48.5±2.1 per 200 ESAMlow or ESAMhi LSK cells, respectively). In the in vivo long-term reconstitution assays, we transplanted 2,000 CD45.1+ ESAMlow or ESAMhi LSK cells with 2 × 105 CD45.2+ competitor BM cells into lethally irradiated CD45.2+ mice. Sixteen weeks after transplantation, the mice transplanted with ESAMhi LSK cells showed significantly higher chimerisms of CD45.1+ cells than those transplanted with ESAMlow LSK, suggesting that long-term HSC are enriched in the ESAMhi fraction. It is noteworthy that the ESAMhi CD45.1+ LSK fraction re-constituted a CD45.1+ LSK population in the CD45.2+ recipient BM, whose ESAM expression levels lowered to the homeostatic level. The results above suggested that ESAM expression level mirrors the activation status of HSC after BM injury. However, it remains unclear if ESAM plays an important role in the hematopoietic recovery. Although we did not observe significant phenotypes except slight anemia in homeostatic ESAM KO mice, we presumed that substantial BM stress might reveal physiological importance of the ESAM expression. At day 5 after injecting 200mg/kg 5-FU, we found that leukocytes and platelet were remarkably decreased in KO mice. Furthermore, the KO mice showed severe anemia (Hb; WT 10.4±1.1 g/dl vs. KO 6.0±1.7 g/dl at day 10), and two of five mice died at day 12. In addition, we observed LSK Flt3− HSC as well as total mononuclear cells more significantly decreased in the KO mice. In summary, our data have shown that ESAM serves as a strong tool to monitor the conversion between dormancy and proliferation of adult BM HSC. In addition, the data from ESAM KO mice have suggested that ESAM is indispensable for normal hematopoietic recovery after BM injury. Further studies should address physiological meanings of the high ESAM level on active HSC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (2) ◽  
pp. 295-302 ◽  
Author(s):  
Adam M. Greenbaum ◽  
Leila D. Revollo ◽  
Jill R. Woloszynek ◽  
Roberto Civitelli ◽  
Daniel C. Link

Abstract There is evidence suggesting that N-cadherin expression on osteoblast lineage cells regulates hematopoietic stem cell (HSC) function and quiescence. To test this hypothesis, we conditionally deleted N-cadherin (Cdh2) in osteoblasts using Cdh2flox/flox Osx-Cre mice. N-cadherin expression was efficiently ablated in osteoblast lineage cells as assessed by mRNA expression and immunostaining of bone sections. Basal hematopoiesis is normal in these mice. In particular, HSC number, cell cycle status, long-term repopulating activity, and self-renewal capacity were normal. Moreover, engraftment of wild-type cells into N-cadherin–deleted recipients was normal. Finally, these mice responded normally to G-CSF, a stimulus that mobilizes HSCs by inducing alterations to the stromal micro-environment. In conclusion, N-cadherin expression in osteoblast lineage cells is dispensable for HSC maintenance in mice.


2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Paola Villafuerte-Gutiérrez ◽  
Montserrat López Rubio ◽  
Pilar Herrera ◽  
Eva Arranz

Hematopoietic myeloproliferative neoplasms with FGFR1 rearrangement result in the 8p11 myeloproliferative syndrome that in the current Word Health Organization classification is designated as “myeloid and lymphoid neoplasm with FGFR1 abnormalities.” We report the case of a 66-year-old man who had clinical features that resembled chronic myeloid leukaemia (CML), but bone marrow cytogenetic and fluorescent in situ hybridization (FISH) studies showed t(8;22)(p11;q11) and BCR-FGFR1 fusion gene. He was initially managed with hydroxyurea, and given the aggressive nature of this disease, four months later, the patient underwent an allogeneic hematopoietic stem-cell transplantation (HSCT) from an HLA-haploidentical relative. Currently, HSCT may be the only therapeutic option for long-term survival at least until more efficacious tyrosine kinase inhibitors (TKIs) become available.


2019 ◽  
Vol 11 (18) ◽  
pp. 2395-2414 ◽  
Author(s):  
Safinaz E-S Abbas ◽  
Riham F George ◽  
Eman M Samir ◽  
Mostafa MA Aref ◽  
Hatem A Abdel-Aziz

Aim: Due to emergence of resistance to available anticancer agents, there is a need to search for new cytotoxic agents. Methods: Pyrido[2,3- d]pyrimidines (4–6) and their tricyclic derivatives (7–13) were prepared and screened for their cytotoxicity against breast MCF-7, prostate PC-3 and lung A-549 cancer cell lines as well as normal fibroblasts WI-38. Results: The most active compounds were 6b, 6e and 8d compared with doxorubicin. Moreover, compounds 6b and 8d induced apoptosis in PC-3 and MCF-7, respectively via activation of CASP3 (in PC-3 only), Bax, p53 and down regulation of Bcl2 in addition to CDK4/6 inhibition. Conclusion: Pyrido[2,3- d]pyrimidine represents an important core for discovery of new potent cytotoxic agents acting on the cell cycle via apoptosis induction through either intrinsic or extrinsic pathways.


Sign in / Sign up

Export Citation Format

Share Document