scholarly journals Plant canopy may promote seed dispersal by wind

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuanping Qin ◽  
Wei Liang ◽  
Zhimin Liu ◽  
Minghu Liu ◽  
Carol C. Baskin ◽  
...  

AbstractSeed dispersal has received much research attention. The plant canopy can intercept diaspores, but the effect of the plant canopy (the aboveground portion of a plant consisting of branches and leaves) on dispersal distance has not been explored empirically. To determine the effect of plant canopy on seed dispersal distance, a comparison of diaspores falling through open air and through plant canopy was made in a wind tunnel using three wind speeds and diaspores with various traits. Compared with diaspores falling through open air, the dispersal distance of diaspores falling through plant canopy was decreased or increased, depending on wind speed and diaspore traits. When falling through a plant canopy, dispersal distance of diaspores with thorns or those without appendages was promoted at low wind speed (2 m s−1), while that of diaspores with low wing loading (0.5 mg mm−2) and terminal velocity (2.5 m s−1) was promoted by relatively high (6 m s−1) wind speed. A plant canopy could increase seed dispersal distance, which may be due to the complicated updraft generated by canopy. The effect of maternal plants on seed dispersal regulates the distribution pattern and the species composition of the community.

2019 ◽  
Vol 286 (1894) ◽  
pp. 20182007 ◽  
Author(s):  
E. Rehm ◽  
E. Fricke ◽  
J. Bender ◽  
J. Savidge ◽  
H. Rogers

Frugivores play differing roles in shaping dispersal patterns yet seed dispersal distance is rarely quantified across entire communities. We model seed dispersal distance using gut passage times and bird movement for the majority (39 interactions) of known bird–tree interactions on the island of Saipan to highlight differences in seed dispersal distances provided by the five avian frugivores. One bird species was found to be a seed predator rather than a disperser. The remaining four avian species dispersed seeds but differences in seed dispersal distance were largely driven by interspecific variation in bird movement rather than intraspecific variation in gut passage times. The median dispersal distance was at least 56 m for all species-specific combinations, indicating all species play a role in reducing high seed mortality under the parent tree. However, one species—the Micronesian Starling—performed 94% of dispersal events greater than 500 m, suggesting this species could be a key driver of long-distance dispersal services (e.g. linking populations, colonizing new areas). Assessing variation in dispersal patterns across this network highlights key sources of variation in seed dispersal distances and suggests which empirical approaches are sufficient for modelling how seed dispersal mutualisms affect populations and communities.


2019 ◽  
Vol 1 (1) ◽  
pp. 185-204 ◽  
Author(s):  
Palanisamy Mohan Kumar ◽  
Krishnamoorthi Sivalingam ◽  
Teik-Cheng Lim ◽  
Seeram Ramakrishna ◽  
He Wei

Small wind turbines are key devices for micro generation in particular, with a notable contribution to the global wind energy sector. Darrieus turbines, despite being highly efficient among various types of vertical axis turbines, received much less attention due to their starting characteristics and poor performance in low wind speeds. Radically different concepts are proposed as a potential solution to enhance the performance of Darrieus turbine in the weak wind flows, all along the course of Darrieus turbine development. This paper presents a comprehensive review of proposed concepts with the focus set on the low wind speed performance and critically assessing their applicability based on economics, reliability, complexity, and commercialization aspects. The study is first of its kind to consolidate and compare various approaches studied on the Darrieus turbine with the objective of increasing performance at low wind. Most of the evaluated solutions demonstrate better performance only in the limited tip speed ratio, though they improve the low wind speed performance. Several recommendations have been developed based on the evaluated concepts, and we concluded that further critical research is required for a viable solution in making the Darrieus turbine a low speed device.


2018 ◽  
Vol 75 (8) ◽  
pp. 2579-2588 ◽  
Author(s):  
Ulf Högström ◽  
Erik Sahlée ◽  
Ann-Sofi Smedman ◽  
Anna Rutgersson ◽  
Erik Nilsson ◽  
...  

Abstract Fifteen hours of consecutive swell data from the experiment Flux, État de la Mer, et Télédétection en Condition de Fetch Variable (FETCH) in the Mediterranean show a distinct upward momentum flux. The characteristics are shown to vary systematically with wind speed. A hysteresis effect is found for wave energy of the wind-sea waves when represented as a function of wind speed, displaying higher energy during decaying winds compared to increasing winds. For the FETCH measurements, the upward momentum transfer regime is found to begin for wind speeds lower than about U = 4 m s−1. For the lowest observed wind speeds U < 2.4 m s−1, the water surface appears to be close to dynamically smooth. In this range almost all the upward momentum flux is accomplished by the peak in the cospectrum between the vertical and horizontal components of the wind velocity. It is demonstrated that this contribution in turn is linearly related to the swell significant wave height Hsd in the range 0.6 < Hsd < 1.4 m. For Hsd < 0.6 m, the contribution is zero in the present dataset but may depend on the swell magnitude in other situations. It is speculated that the observed upward momentum flux in the smooth regime, which is so strongly related to the cospectral peak at the dominant swell frequency, might be caused by the recirculation mechanism found by Wen and Mobbs in their numerical simulation of laminar flow of a nonlinear progressive wave at low wind speed.


2020 ◽  
Vol 77 (11) ◽  
pp. 3759-3768
Author(s):  
Charles L. Vincent ◽  
Hans C. Graber ◽  
Clarence O. Collins

AbstractBuoy observations from a 1999 Gulf of Mexico field program (GOM99) are used to investigate the relationships among friction velocity u*, wind speed U, and amount of swell present. A U–u*sea parameterization is developed for the case of pure wind sea (denoted by u*sea), which is linear in U over the range of available winds (2–16 m s−1). The curve shows no sign of an inflection point near 7–8 m s−1 as suggested in a 2012 paper by Andreas et al. on the basis of a transition from smooth to rough flow. When observations containing more than minimal swell energy are included, a different U–u* equation for U < 8 m s−1 is found, which would intersect the pure wind-sea curve about 7–8 m s−1. These two relationships yield a bilinear curve similar to Andreas et al. with an apparent inflection near 7–8 m s−1. The absence of the inflection in the GOM99 experiment pure wind-sea curve and the similarity of the GOM99 swell-dominated low wind speed to Andreas et al.’s low wind speed relationship suggest that the inflection may be due to the effect of swell and not a flow transition. Swell heights in the range of only 25–50 cm may be sufficient to impact stress at low wind speeds.


2020 ◽  
Author(s):  
Theodora Bello ◽  
Adewale Ajao ◽  
Oluwagbemiga Jegede

&lt;p&gt;The study investigates impact of wind speeds on the turbulent transport of CO&lt;sub&gt;2 &lt;/sub&gt;fluxes for a land-surface atmosphere interface in a low-wind tropical area between May 28&lt;sup&gt;th&lt;/sup&gt; and June 14&lt;sup&gt;th&lt;/sup&gt;, 2010; and May 24&lt;sup&gt;th&lt;/sup&gt; and June 15&lt;sup&gt;th&lt;/sup&gt;, 2015. Eddy covariance technique was used to acquire turbulent mass fluxes of CO&lt;sub&gt;2&lt;/sub&gt; and wind speed at the study site located inside the main campus of Obafemi Awolowo University, Ile &amp;#8211; Ife, Nigeria. The results showed high levels of CO&lt;sub&gt;2 &lt;/sub&gt;fluxes at nighttime attributed to stable boundary layer conditions and low wind speed. Large transport and distribution of CO&lt;sub&gt;2 &lt;/sub&gt;fluxes were observed in the early mornings due to strong wind speeds recorded at the study location. In addition, negative CO&lt;sub&gt;2 &lt;/sub&gt;fluxes were observed during the daytime attributed to prominent convective and photosynthetic activities. The study concludes there was an inverse relationship between turbulent transport of CO&lt;sub&gt;2 &lt;/sub&gt;fluxes and wind speed for daytime period while nighttime CO&lt;sub&gt;2&lt;/sub&gt; fluxes showed no significant correlation.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords&lt;/strong&gt;: CO&lt;sub&gt;2 &lt;/sub&gt;fluxes, Wind speed, Turbulent transport, Low-wind tropical area, Stable boundary layer&lt;/p&gt;


2013 ◽  
Vol 26 (4) ◽  
pp. 1172-1191 ◽  
Author(s):  
Nick Earl ◽  
Steve Dorling ◽  
Richard Hewston ◽  
Roland von Glasow

Abstract The climate of the northeast Atlantic region comprises substantial decadal variability in storminess. It also exhibits strong inter- and intra-annual variability in extreme high and low wind speed episodes. Here the authors quantify and discuss causes of the variability seen in the U.K. wind climate over the recent period 1980–2010. Variations in U.K. hourly mean (HM) wind speeds, in daily maximum gust speeds and in associated wind direction measurements, made at standard 10-m height and recorded across a network of 40 stations, are considered. The Weibull distribution is shown to generally provide a good fit to the hourly wind data, albeit with the shape parameter k spatially varying from 1.4 to 2.1, highlighting that the commonly assumed k = 2 Rayleigh distribution is not universal. It is found that the 10th and 50th percentile HM wind speeds have declined significantly over this specific period, while still incorporating a peak in the early 1990s. The authors' analyses place the particularly “low wind” year of 2010 into longer-term context and their findings are compared with other recent international studies. Wind variability is also quantified and discussed in terms of variations in the exceedance of key wind speed thresholds of relevance to the insurance and wind energy industries. Associated interannual variability in energy density and potential wind power output of the order of ±20% around the mean is revealed. While 40% of network average winds are in the southwest quadrant, 51% of energy in the wind is associated with this sector. The findings are discussed in the context of current existing challenges to improve predictability in the Euro-Atlantic sector over all time scales.


2010 ◽  
Vol 49 (9) ◽  
pp. 1805-1817
Author(s):  
Veronica E. Wannberg ◽  
Gustavious Williams ◽  
Patrick Sawyer ◽  
Richard Venedam

Abstract A unique field dataset from a series of low–wind speed experiments, modeling efforts using three commonly used models to replicate these releases, and statistical analysis of how well these models were able to predict the plume concentrations is presented. The experiment was designed to generate a dataset to describe the behavior of gaseous plumes under low-wind conditions and the ability of current, commonly used models to predict these movements. The dataset documents the release and transport of three gases: ammonia (buoyant), ethylene (neutral), and propylene (dense) in low–wind speed (diffusion) conditions. Release rates ranged from 1 to 20 kg h−1. Ammonia and ethylene had five 5-min releases each to represent puff releases and five 20-min releases each to represent plume releases. Propylene had five 5-min puffs, six 20-min plumes, and a single 30-min plume. Thirty-two separate releases ranging from 6 to 47 min were conducted, of which only 30 releases generated useful data. The data collected included release rates, atmospheric concentrations to 100 m from the release point, and local meteorological conditions. The diagnostics included nine meteorological stations on 100-m centers and 36 photoionization detectors in a radial pattern. Three current state-of-the-practice models, Aerial Locations of Hazardous Atmospheres (ALOHA), Emergency Prediction Information code (EPIcode), and Second-Order Closure Integrated Puff (SCIPUFF), were used to try to duplicate the measured field results. Low wind speeds are difficult to model, and all of the models had difficulty replicating the field measurements. However, the work does show that these models, if used correctly, are conservative (overpredict concentrations) and can be used for safety and emergency planning.


2016 ◽  
Vol 31 (6) ◽  
pp. 881-889 ◽  
Author(s):  
Yumiko Mise ◽  
Koji Yamazaki ◽  
Masashi Soga ◽  
Shinsuke Koike

2021 ◽  
Author(s):  
Sissi Donna Lozada Gobilard ◽  
Florian Jeltsch ◽  
Jinlei Zhu

Abstract Background Seed dispersal plays an important role in population dynamics in agricultural ecosystems, but the effects of surrounding vegetation height on seed dispersal and population connectivity on the landscape scale have rarely been studied. Understanding the effects of surrounding vegetation height on seed dispersal will provide important information for land use management in agricultural landscapes to prevent the spread of undesired weeds or enhance functional connectivity. Methods We used two model species, Phragmites australis and Typha latifolia, growing in small natural ponds known as kettle holes, in an agricultural landscape to evaluate the effects of surrounding vegetation height on wind dispersal and population connectivity between kettle holes. Seed dispersal distance and the probability of long-distance dispersal (LDD) were simulated with the mechanistic WALD model under three scenarios of “low”, “dynamic” and “high” surrounding vegetation height. Connectivity between the origin and target kettle holes was quantified with a connectivity index adapted from Hanski and Thomas (1994). Results Our results show that mean seed dispersal distance decreases with the height of surrounding matrix vegetation, but the probability of long-distance dispersal (LDD) increases with vegetation height. This indicates an important vegetation-based trade-off between mean dispersal distance and LDD, which has an impact on connectivity. Conclusions Matrix vegetation height has a negative effect on mean seed dispersal distance but a positive effect on the probability of LDD. This positive effect and its impact on connectivity provide novel insights into landscape level (meta-)population and community dynamics — a change in matrix vegetation height by land use or climatic changes could strongly affect the spread and connectivity of wind-dispersed plants. The opposite effect of vegetation height on mean seed dispersal distance and the probability of LDD should therefore be considered in management and analyses of future land use and climate change effects.


Sign in / Sign up

Export Citation Format

Share Document