scholarly journals XPS and structural studies of Fe3O4-PTMS-NAS@Cu as a novel magnetic natural asphalt base network and recoverable nanocatalyst for the synthesis of biaryl compounds

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Homa Kohzadi ◽  
Mohammad Soleiman-Beigi

AbstractIn this research, natural asphalt as a mineral carbonuous material was converted to sodium natural asphalt sulfonate (Na-NAS) and, then, was linked to Fe3O4 MNPs in order to synthesize the magnetic nanocatalyst. Afterwards, Cupper (I) and Cu (II) was grafted on Fe3O4-PTMS-NAS. Moreover, it is worth mentioning that the synthesized the novel magnetic nanocatalyst (Fe3O4-PTMS-NAS@Cu) was successfully used in Suzuki and Stille coupling reactions. The Fe3O4-PTMS-NAS@Cu MNPs were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), inductively coupled plasma (ICP), BET and X-ray photoelectron spectroscopy (XPS) analysis. Besides, sulfonation of natural asphalt, magnetization of catalyst, grafting of Cu (I) and Cu (II) to NAS and catalyst formation were investigated and proved carefully. This nanocatalyst can be comfortably separated from the reaction medium through an external magnetic field and can also be recovered and reused, while maintaining its catalytic activity.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1340
Author(s):  
Davide Motta ◽  
Ilaria Barlocco ◽  
Silvio Bellomi ◽  
Alberto Villa ◽  
Nikolaos Dimitratos

In the present work, an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime.


Chemija ◽  
2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Jolita Jablonskienė ◽  
Dijana Šimkūnaitė ◽  
Jūratė Vaičiūnienė ◽  
Algirdas Selskis ◽  
Audrius Drabavičius ◽  
...  

MnO2/C nanocomposites have been prepared using a simple onestep microwave heating method by applying different concentrations of cationic surfactant – cetyl trimethylammonium bromide (CTAB). The morphology and composition of the prepared MnO2/C nanocomposites have been investigated using X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The electrochemical performance of the prepared nanocomposites has been analysed using cyclic voltammetry. It was found that a high specific capacitance (Cs) of 742 F g−1 at a scan rate of 10 mV s−1 in a 1 M Na2SO4 solution has been obtained for the MnO2/C nanocomposite that has the mass loading of 0.140 mg cm−2 and has been synthesized in the absence of CTAB. Meanwhile, the application of CTAB allowed the increase in the mass loading of MnO2 in the nanocomposites. In the presence of CTAB, the highest value of 654 F g−1 at a scan rate of 10 mV s−1 has been obtained for MnO2/C that has the mass loading of 0.570 mg cm−2. This result confirmed a good performance of the prepared MnO2/C nanocomposites as the electrode material for supercapacitors.


2019 ◽  
Vol 11 (12) ◽  
pp. 1731-1738 ◽  
Author(s):  
Ma Hui ◽  
Wu Juzhen ◽  
Zhao Li ◽  
Zhou Zheng ◽  
Guo Jiahu

A one-pot simple and efficient synthetic route for the synthesis of Au-loaded Fe2O3 nanoparticles was developed, and this material's photocatalytic activity for visible light assisted oxidation of alcohols and degradation of organic dye were studied. As-synthesized nanostructured catalyst was characterised by powder X-ray diffraction (XRD), transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), SEM-mapping, X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherm (BET), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). It was observed that 5–10 nm Au-nanoparticles supported on 10–80 nm Fe2O3 shows boomerang-shaped nanoparticle. Gold loading of 1 wt% shows high conversion and selectivity towards the target product aldehyde. The synthesized nanomaterial also proved to be an excellent photocatalyst for degradation of organic dyes such as methylene blue (MB) and rhodamine B (RhB). The catalyst proved to be noteworthy as it does not loss in its catalytic activity even after five cycles of reuse.


NANO ◽  
2021 ◽  
pp. 2150002
Author(s):  
Yalu Wu ◽  
Yinyin Xu ◽  
Jingbo Feng ◽  
Yan Zhang

The novel Al-MOF@PPy@Au nanocomposites were synthesized by an in-situ growth method. The prepared Al-MOF@PPy@Au nanocomposites were characterized by Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectrometer (FTIR), X-ray powder diffraction (XRD), Inductively Coupled Plasma (ICP) and X-ray photoelectron spectroscopy (XPS). The catalytic properties of the prepared Al-MOF@PPy@Au nanocomposites with different content of Au were investigated. The results illustrated that the Al-MOF@PPy@Au(G) with 27.80 wt.% (w/w) Au obtained good catalytic performance. P-nitrophenol (4-NP), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB) were used to test the catalytic degradation of Al-MOF@PPy@Au(G) nanocomposites. The degradation efficiency of the Al-MOF@PPy@Au(G) nanocomposites for 4-NP, MO, MB and RhB reached 92.12%, 93.84%, 93.19% and 92.44% within 25 min, 7 min, 16 min and 2 min, respectively. The Al-MOF@PPy@Au(G) nanocomposites still have good degradation efficiency and good stability for 4-NP within one month being in water. The Al-MOF@PPy@Au(G) nanocomposites can be applied to the real water solution without causing the change of the degradation efficiency.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1258 ◽  
Author(s):  
Selvan Mohan ◽  
Juliska Princz ◽  
Banu Ormeci ◽  
Maria C. DeRosa

There is increasing interest in the environmental fate and effects of engineered nanomaterials due to their ubiquitous use in consumer products. In particular, given the mounting evidence that dramatic transformations can occur to a nanomaterial throughout its product lifecycle, the appropriateness of using pristine nanomaterials in environmental testing is being questioned. Using a combination of transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-mass spectrometry (ICP-MS), this work examines the morphological and compositional effects of conditions mimicking a typical lifecycle of a nano-enabled product, from the production of the silver nanoparticle (AgNP)-laden textiles, through its use, laundering, and then finally, its leaching and incubation in the wastewater collection system. These simulated weathering conditions showed evidence for the transformation of AgNPs into AgCl and Ag2S. Incubation in raw wastewater had the most dramatic effect on the AgNPs in terms of transformation, no matter what initial weathering was applied to the NPs prior to incubation. However, despite extensive transformation noted, AgNPs were still present within all the samples after the use scenarios.


Clay Minerals ◽  
2001 ◽  
Vol 36 (3) ◽  
pp. 447-464 ◽  
Author(s):  
J. M. Huggett ◽  
A. S. Gale ◽  
N. Clauer

AbstractVariegated palaeosols, which formed from weathering of clays, silts and brackish to freshwater limestones, are present in the Late Eocene–Early Oligocene Solent Group of the Hampshire Basin, southern UK. The composition and origin of the clay in three segments of the lower part of the Solent Group have been investigated by X-ray diffraction, microprobe analysis, inductively coupled plasma-mas spectrometry, K/Ar dating, high resolution scanning electron microscopy, analytical transmission electron microscopy and wet chemistry. The detrital clay mineral suite is dominated by illite and smectite with minor kaolinite and chlorite. Seasonal wetting and drying in gley soils has resulted in replacement of smectite by Fe-rich, or illite-rich illitesmectite. Illite has also formed with gypsum and calcite in ephemeral hypersaline alkaline lakes that periodically dried out. This illite may have precipitated directly from solution. X-ray diffraction data and probe analyses indicate that the neoformed illite is Fe-rich. The K and Fe for the illitization are thought to be derived from weathered glauconite reworked from the underlying Bracklesham Group and Barton Beds.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Narges Vahedi-Notash ◽  
Majid M. Heravi ◽  
Ali Alhampour ◽  
Pourya Mohammadi

Abstract In this research, we reported an effective method for the synthesis of a new mesoporous triazine-based carbon (MTC) substrate and its application as the green and recoverable catalyst in the synthesis of organic compounds. The porous carbon acted as a substrate for silver active species after its surface modification by chloroacetonitrile (Ag@MTC). The Ag@MTC nanocatalyst was characterized by several techniques namely, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, and inductively coupled plasma. The Ag@MTC catalyst was applied for the reduction of nitroaromatic compounds in aqueous media by using NaBH4 (reducing agent) at room temperature. This nanocatalyst can be readily recovered and recycled for at least nine runs without a notable decrease in its efficiency. Catalytic efficiency studies exhibited that Ag@MTC nanocatalyst had good activity towards reduction reactions.


2013 ◽  
Vol 680 ◽  
pp. 49-53
Author(s):  
Chang Yu ◽  
Xu Zhang ◽  
Kan He ◽  
Yue Liu ◽  
Jie Shan Qiu

A novel biocompatible Fe2+-chitosan (CTS)/citric acid modified carbon nanotube (CA-CNTs) composite (Fe2+-CTS/CA-CNTs) has been successfully synthesized by covalent bonding and crosslinking chemistry, followed by the reduction. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis spectrum, X-ray diffraction (XRD), inductively coupled plasma (ICP), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) techniques. The results show that the CTS has been successfully grafted to the CA-CNTs carrier and Fe2+ ions are absorbed on the CTS by coordination bond mode. It was found that the Fe2+-CTS/CA-CNTs composite shows good magnetic properties with a low ratio of remanence to saturation magnetization and is in a superparamagnetic state at room temperature. It is believed that the Fe2+-CTS/CA-CNTs composite will be potential for application in MRI.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1195
Author(s):  
Guillem Fernández ◽  
Roser Pleixats

PEGylated imidazolium (bromide and tetrafluoroborate) and tris-imidazolium (bromide) salts containing triazole linkers have been used as stabilizers for the preparation of water-soluble rhodium(0) nanoparticles by reduction of rhodium trichloride with sodium borohydride in water at room temperature. The nanomaterials have been characterized (Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron Spectroscopy, Inductively Coupled Plasma-Optical Emission Spectroscopy). They proved to be efficient and recyclable catalysts for the stereoselective hydrosilylation of internal alkynes, in the presence or absence of solvent, and in the reduction of nitroarenes to anilines with ammonia-borane as hydrogen donor in aqueous medium (1:4 tetrahydrofuran/water).


Sign in / Sign up

Export Citation Format

Share Document