scholarly journals Morpho-molecular identification and first report of Fusarium equiseti in causing chilli wilt from Kashmir (Northern Himalayas)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ammarah Hami ◽  
Rovidha S. Rasool ◽  
Nisar A. Khan ◽  
Sheikh Mansoor ◽  
Mudasir A. Mir ◽  
...  

AbstractChilli (Capsicum annuum L.) is one of the most significant vegetable and spice crop. Wilt caused by Fusarium Sp. has emerged as a serious problem in chilli production. Internal transcribed spacer (ITS) region is widely used as a DNA barcoding marker to characterize the diversity and composition of Fusarium communities. ITS regions are heavily used in both molecular methods and ecological studies of fungi, because of its high degree of interspecific variability, conserved primer sites and multiple copy nature in the genome. In the present study we focused on morphological and molecular characterization of pathogen causing chilli wilt. Chilli plants were collected from four districts of Kashmir valley of Himalayan region. Pathogens were isolated from infected root and stem of the plants. Isolated pathogens were subjected to DNA extraction and PCR amplification. The amplified product was sequenced and three different wilt causing fungal isolates were obtained which are reported in the current investigation. In addition to Fusarium oxysporum and Fusarium solani, a new fungal species was found in association with the chilli wilt in Kashmir valley viz., Fusarium equiseti that has never been reported before from this region. The studies were confirmed by pathogenicity test and re-confirmation by DNA barcoding.

Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 815-821 ◽  
Author(s):  
J. X. Zhang ◽  
W. G. D. Fernando ◽  
W. R. Remphrey

A specific and sensitive polymerase chain reaction (PCR) assay was developed to detect Apiosporina morbosa, the causal agent of black knot disease on chokecherry, Prunus virginiana (including the cultivar ‘Shubert Select’). A pair of A. morbosa-specific forward and reverse primers (AMF and AMR) was designed from the internal transcribed spacer (ITS) regions of A. morbosa, preamplified by universal ITS primers ITS1 and ITS4, and compared with the ITS region sequences of Fusarium, Alternaria, Phoma, and Cladosporium species associated with black knots. The primers were tested for their specificity to A. morbosa detection in the PCR assays using DNA derived from 64 pure cultures, including 42 single-spore isolates of A. morbosa and 22 isolates of other fungi, as well as healthy and diseased plant branches collected from the field. A product of ~400 bp was amplified from DNA of all isolates belonging to A. morbosa. No product was amplified from DNA of other fungal species, confirming the specificity of the newly designed primers. Within plant tissues, the pathogen was detected at further distances from the edges of knots on thicker branches bearing larger knots compared with thinner branches bearing smaller knots. The PCR assay has shown high sensitivity, needing only 100 fg of the A. morbosa DNA for a reliable PCR amplification with the AMF and AMR primers.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 847-847 ◽  
Author(s):  
M. Lazarotto ◽  
M. F. B. Muniz ◽  
R. F. dos Santos ◽  
E. Blume ◽  
R. Harakawa ◽  
...  

Pecan [Carya illinoinensis (Wangenh.) K. Koch] is an important producing nut tree that has been intensively cultivated in the state of Rio Grande do Sul (Brazil) in recent decades. This species is commonly grown in association with other crops and more often with cattle or sheep. An elevated incidence of the fungal genus Fusarium was observed during a quality control seed assay of pecan seeds obtained from orchards in the city of Anta Gorda (28°53′54.7″ S, 52°01′59.9″ W). Concomitantly, seedlings of this species, cultivated in a nursery, showed foliar necrosis, wilt, and root rot. The fungus was thereafter isolated from the seeds (from original seeds lots) and subcultured from single spores. Cultures were purified in order to perform pathogenicity tests. The isolated Fusarium sp. was increased on autoclaved wet corn kernels that were incubated for 14 days (1), and then were mixed with commercial substrate (sphagnum turf, expanded vermiculite, dolomitic limestone, gypsum, and NPK fertilizer) in plastic trays (capacity 7 L), with drainage holes. Twenty seeds were sowed and 90 days later, evaluations were undertaken. Forty percent of the seedlings presented symptoms, i.e., foliar necrosis and wilt owing to root rot. Fusarium sp. was re-isolated from the affected roots by transferring hyphal tips to potato dextrose agar (PDA) and carnation leaf agar (CLA) medium in petri dishes in order to identify the species morphologically. On PDA, the colony pigmentation was yellowish brown and the aerial mycelium was whitish to peach; macroconidia were relatively long and narrow (31.75 × 4.02 μm), with 5 septa on average, and whip-like bent apical cells (2). Chlamydospores were not observed on PDA or CLA. Primer pairs ITS1 and ITS4 (3) and EF1-T and EF1-1567R (4) were employed to amplify the internal transcribed spacer (ITS) and elongation factor-1α (TEF 1-α) regions, respectively. The resulting DNA sequences showed 99% for ITS and 98% for TEF 1-α similarity with Fusarium equiseti (Corda) Sacc. and phylogenetic analysis grouped it with sequences of this species. The consensus sequence was submitted to GenBank and received the accession numbers KC810063 (ITS) and KF601580 (TEF 1-α). The pathogen was re-isolated on PDA and CLA substrate in order to complete Koch's postulates. The pathogenicity test was repeated with the same conditions described before and the results were confirmed. No symptoms were observed on the control seedlings. This species is considered a weak parasite (2); however, it has been reported causing wilt in Coffea arabica in Brazil (5). This pathogen could cause serious damage and high losses to seedling in commercial nurseries. Besides that, it could also carry the disease to the field causing further damage on established plants. To our knowledge, this is the first to report of F. equiseti causing foliar necrosis and wilt on C. illinoinensis in Brazil. References: (1) L. H. Klingelfuss et al. Fitopatol. Brasil. 32:1, 2007. (2) W. Gerlach and H. Nirenberg. The Genus Fusarium – a Pictorial Atlas. Biologische Bundesanstalt für Land- und Forstwirtschaft, Braunschweig, Germany, 1982. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, CA, 1990. (4) S. A. Rehner and E. A. Buckley. Mycologia 97:84, 2005. (5) L. H. Pfenning and M. F. Martins. Page 283 in: Simpósio de Pesquisa dos Cafés do Brasil, 2000.


2020 ◽  
Vol 8 (3) ◽  
pp. 459
Author(s):  
Sonia Salazar-Cerezo ◽  
María de la Cruz Meneses-Sánchez ◽  
Rebeca D. Martínez-Contreras ◽  
Nancy Martínez-Montiel

Crataegus sp. is a tree that grows in temperate zones with worldwide distribution and is commonly known in Mexico as tejocote. The use of products derived from Crataegus in traditional medicine, food, and cosmetics has increased over the last few years and the relevance of this plant has also grown. Here, we report a disease that was observed in tejocote plants that grew both in the wild and in greenhouses in Puebla (Mexico). The disease was characterized by necrotic spots on the leaf ranging from brown to reddish tones that were accompanied by structures on the back of the leaf. Furthermore, we investigated the fungal genera associated with infected leaves in wild tejocote plants, from which we recovered Alternaria sp., Aureobasidium sp., Dreschlera sp., Fusarium sp., Paecilomyces sp. and Ulocladium sp. genera. Inoculation on healthy Crataegus sp. plants with isolate UAP140 showed similar symptoms as observed in nature, while inoculation with UAP127 resulted in the development of necrotic lesions in the leaf. The identity of these isolates was further studied through the phylogenetic analysis of the ribosomal DNA internal transcribed spacer (ITS) region, where isolate UAP140 showed the highest identity with Fusarium equiseti and isolate UAP127 was similar to Alternaria arborescens. To our knowledge, this is the first report of a characteristic disease developed in Crataegus sp. plants in Mexico where the fungal community associated to the lesion was analyzed. Further studies would be necessary to determine the ecological and environmental implications of the microbiome on the appearance and development of the disease.


2021 ◽  
Vol 27 (2) ◽  
pp. 107-113
Author(s):  
N. G. Iyanyi ◽  
A. E. Ataga ◽  
E. A Obichi ◽  
S. C. Agbasoga

The decay of faecal matter from a septic system causes the arousal of fungi in the surrounding soil. These fungi can cause diseases if there is sewage spillage containing untreated or improperly treated wastewaters. Molecular techniques of identification of fungi have shown to be more dependable than traditional methods of identifying fungal species. This study was carried out to identify the fungal species associated with soil obtained from sewage-impacted soil near a septic tank using both traditional cultural techniques and molecular method. Fungi associated with the soil samples were isolated using serial dilution and Potato Dextrose Agar (PDA) method. Deoxyribonucleic Acid (DNA) was extracted from the pure cultures of fungal isolates using Quick DNA Fungal/Bacterial Miniprep kit. Polymerase Chain Reaction (PCR) amplification of internal transcribed spacer (ITS) region of the fungal isolates was carried out using universal primer pair; ITS4 and ITS5. The PCR products were sequenced and the sequences were blasted against National Centre for Biotechnology Information database. The result of the nucleotide sequence analysis revealed the identity of the isolates as Trichoderma harzanium with 580 base pairs and Aspergillus welwitschiae with 560 base pairs. Sequences of the isolates were aligned and compared with sequences on GenBank and a phylogenetic tree was constructed. The cultural method only aided in suggesting the suspected genera of the isolates while the molecular method was able to identify the isolates to the species level. This study will promote the knowledge of the fungal species associated with sewage-impacted soil and also aid researchers in proffering ways to enhance the prevention/control of diseases associated with sewage spill. Keyword: Septic tank, fungi, soil, phylogeny, sequencing


Author(s):  
Nurrahmi Dewi Fajarningsih

Despite the fact that fungi are important sources of both bioactive compounds and mycotoxins, and that they are very ubiquitous in our environment, their species identification is hampered by incomplete and often unclear literature. Fungi identification is primarily based on their phenotypic and physiological characteristics. Nowadays, many molecular methods to identify fungal species have been developed. One of the methods considered as a new concept to rapidly and accurately identify unknown fungal sample is DNA Barcoding. This literature review will outline the use of DNA barcoding approach to rapidly identify fungal species and the use of ITS region that recently has been designated as primary DNA barcode for fungal kingdom. “DNA barcode” is a short, highly variable and standardized DNA region with approximately 700 nucleotides in length, which is used as a unique pattern to identify living things. Internal Transcribed Spacer (ITS) region of nuclear DNA (rDNA) has become the most sequenced region to identify fungal taxonomy at species level, and even within species. ITS region is a highly polymorphic non-coding region with enough taxonomic units. Therefore, it is able to separate sequences into species level. Even though ribosomal ITS as a universal barcode marker for fungi is still hampered by few limitations, the ITS will remain as the key choice for fungal identification. The search for alternative regions as DNA marker to improve fungal identification, especially in specific heredities, has already started. 


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1315-1315 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
C. Bertoldo ◽  
M. L. Gullino

During the summer of 2010, rocket (Eruca sativa) plants grown in an open field and under a plastic tunnel in Piedmont (northern Italy) showed symptoms of a previously reported foliar disease. Symptoms were observed on 30-day-old plants and consisted of small, circular, brown leaf spots (1 to 3 to 10 to 12 mm in diameter), sometimes later becoming elliptical. Necrotic lesions were cracked in the center and showed a well-defined border, frequently surrounded by a violet-brown halo. Approximately 40% of the plants were affected with 30 to 40% of the leaves infected. An orange-brown colony with characteristics of Fusarium was isolated from leaf tissues of 30 infected plants on potato dextrose agar (PDA). Isolates were purified, subcultured on PDA, and single-spore cultures were obtained. On PDA, they produced orange-brown colonies and purple pigments. On Spezieller Nährstoffarmer agar (SNA) (1), the isolates produced hyaline macroconidia with dorsiventral curvature, five to seven septate, and measuring 36.2 to 49.3 × 3.4 to 5.3 (average 41.9 × 4.0) μm. Chlamydospores, solitary but also in short chains (two to three elements), measuring 7.2 to 15.3 (average 10.1) μm were produced on carnation leaf agar (CLA) after 10 days and became verrucose 20 days later. Macroconidia were produced on CLA in orange sporodochia from monophialides on branched conidiophores. Microconidia were not observed. Such characteristics are typical of the genus Fusarium (1). The rDNA ITS region (internal transcribed spacer) was amplified using the primers ITS1/ITS4 (2) and sequenced. BLASTn analysis of the 480-bp product obtained showed an E-value of 0.0 with Fusarium equiseti. The nucleotide sequence has been assigned the GenBank Accession No. JF460797. The translation elongation factor-1α (EF-1α) gene (GenBank Accession No. JN127347) was amplified using primers EF-1/EF-2 and sequenced. The 702-bp fragment showed 99% identity with F. equiseti (GenBank Accession No. FJ939673.1). To confirm pathogenicity, 20-day-old rocket plants were transplanted into 2-liter volume pots, filled with a steamed peat/perlite/sand (60:20:20 vol/vol) substrate and maintained in a growth chamber at 25 ± 1°C. Five pots per treatment were used, each pot containing two plants. The artificial inoculation was carried out either by spraying leaves with a spore suspension prepared from 15-day-old cultures of the pathogen on PDA or by applying CLA agar disks (6 mm in diameter) from 10-day-old cultures onto leaves. Control plants were inoculated with distilled water or with noninoculated agar disks. Plants were covered with plastic bags for 5 days. The first symptoms, consisting of chlorotic leaf halo and leaf spots surrounded by a violet-brown halo, developed 15 days after inoculation by foliar spraying and 5 days after inoculation by disks. Noninoculated plants remained healthy. F. equiseti was consistently isolated from symptomatic plants. The pathogenicity test was conducted twice. To our knowledge, this is the first report of F. equiseti on E. sativa in Italy. Currently, this disease is present in several farms in northern Italy. Its importance might increase because of the widespread cultivation of cultivated rocket in Italy. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell, Ames, IA, 2006. (2) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
João P. M. Araújo ◽  
Mitsuru G. Moriguchi ◽  
Shigeru Uchiyama ◽  
Noriko Kinjo ◽  
Yu Matsuura

AbstractThe entomopathogenic genus Ophiocordyceps includes a highly diverse group of fungal species, predominantly parasitizing insects in the orders Coleoptera, Hemiptera, Hymenoptera and Lepidoptera. However, other insect orders are also parasitized by these fungi, for example the Blattodea (termites and cockroaches). Despite their ubiquity in nearly all environments insects occur, blattodeans are rarely found infected by filamentous fungi and thus, their ecology and evolutionary history remain obscure. In this study, we propose a new species of Ophiocordyceps infecting the social cockroaches Salganea esakii and S. taiwanensis, based on 16 years of collections and field observations in Japan, especially in the Ryukyu Archipelago. We found a high degree of genetic similarity between specimens from different islands, infecting these two Salganea species and that this relationship is ancient, likely not originating from a recent host jump. Furthermore, we found that Ophiocordyceps lineages infecting cockroaches evolved around the same time, at least twice, one from beetles and the other from termites. We have also investigated the evolutionary relationships between Ophiocordyceps and termites and present the phylogenetic placement of O. cf. blattae. Our analyses also show that O. sinensis could have originated from an ancestor infecting termite, instead of beetle larvae as previously proposed.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 199
Author(s):  
Xiaochun Zhang ◽  
Huan Yu ◽  
Qi Yang ◽  
Ziwei Wang ◽  
Ruocheng Xia ◽  
...  

In recent years, trafficking and abuse of hallucinogenic mushrooms have become a serious social problem. It is therefore imperative to identify hallucinogenic mushrooms of the genus Psilocybe for national drug control legislation. An internal transcribed spacer (ITS) is a DNA barcoding tool utilized for species identification. Many methods have been used to discriminate the ITS region, but they are often limited by having a low resolution. In this study, we sought to analyze the ITS and its fragments, ITS1 and ITS2, by using high-resolution melting (HRM) analysis, which is a rapid and sensitive method for evaluating sequence variation within PCR amplicons. The ITS HRM assay was tested for specificity, reproducibility, sensitivity, and the capacity to analyze mixture samples. It was shown that the melting temperatures of the ITS, ITS1, and ITS2 of Psilocybe cubensis were 83.72 ± 0.01, 80.98 ± 0.06, and 83.46 ± 0.08 °C, and for other species, we also obtained species-specific results. Finally, we performed ITS sequencing to validate the presumptive taxonomic identity of our samples, and the sequencing output significantly supported our HRM data. Taken together, these results indicate that the HRM method can quickly distinguish the DNA barcoding of Psilocybe cubensis and other fungi, which can be utilized for drug trafficking cases and forensic science.


2002 ◽  
Vol 27 (6) ◽  
pp. 639-643 ◽  
Author(s):  
RITA C. B. WEIKERT-OLIVEIRA ◽  
M. APARECIDA DE RESENDE ◽  
HENRIQUE M. VALÉRIO ◽  
RACHEL B. CALIGIORNE ◽  
EDILSON PAIVA

Twenty isolates of four fungal species, agents of "Helminthosporium" diseases in cereals, were collected from different regions: nine Bipolarisoryzae isolated from rice (Oryza sativa), seven B.sorokiniana from wheat (Triticum aestivum), two B. maydis, and two Exserohilumturcicum from maize (Zea mays). The strains were compared by PCR-RFLP and RAPD analysis. Size polymorphism among the isolates in the ITS region comprising the 5.8 S rDNA indicated genetic differences among the isolates, while a UPGMA phenogram constructed after the digestion of this region with restriction enzymes showed inter- and intra-specific polymorphism. The RAPD profiles indicated an expressive level of polymorphism among different species, compared with a low level of polymorphism among isolates of the same species. A UPGMA phenogram grouped the isolates according to the species and their host plant. RAPD profiles did not reveal polymorphism that directly correlated climatic factors with geographic source of the isolates of B. sorokiniana, and B. oryzae. Teleomorphic species revealed high similarity with their correspondent anamorphs.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 843-843 ◽  
Author(s):  
N.-H. Lu ◽  
Q.-Z. Huang ◽  
H. He ◽  
K.-W. Li ◽  
Y.-B. Zhang

Avicennia marina is a pioneer species of mangroves, a woody plant community that periodically emerges in the intertidal zone of estuarine regions in tropical and subtropical regions. In February 2013, a new disease that caused the stems of A. marina to blacken and die was found in Techeng Island of Zhanjiang, Guangdong Province, China. Initial symptoms of the disease were water-soaked brown spots on the biennial stems that coalesced so whole stems browned, twigs and branches withered, leaves defoliated, and finally trees died. This disease has the potential to threaten the ecology of the local A. marina community. From February to May 2013, 11 symptomatic trees were collected in three locations on the island and the pathogen was isolated as followed: tissues were surface disinfected with 75% ethanol solution (v/v) for 20 s, soaked in 0.1% mercuric chloride solution for 45 s, rinsed with sterilized water three times, dried, placed on potato dextrose agar (PDA), and incubated for 3 to 5 days at 28°C without light. Five isolates (KW1 to KW5) with different morphological characteristics were obtained, and pathogenic tests were done according Koch's postulates. Fresh wounds were made with a sterile needle on healthy biennial stems of A. marina, and mycelial plugs of each isolate were applied and covered with a piece of wet cotton to maintain moisture. All treated plants were incubated at room temperature. Similar symptoms of black stem were observed only on the stems inoculated the isolate KW5 after 35 days, while the control and all stems inoculated with the other isolates remained symptomless. An isolate similar to KW5 was re-isolated from the affected materials. The pathogenic test was repeated three times with the same conditions and it was confirmed that KW5 was the pathogen causing the black stem of A. marina. Hyphal tips of KW5 were transferred to PDA medium in petri dishes for morphological observation. After 48 to 72 h, white, orange, or brown flocculence patches of KW5 mycelium, 5.0 to 6.0 cm in diameter, grew. Tapering and spindle falciform macroconidia (11 to 17.3 μm long × 1.5 to 2.5 μm wide) with an obviously swelled central cell and narrow strips of apical cells and distinctive foot cells were visible under the optical microscope. The conidiogenous cells were intertwined with mycelia and the chlamydospores were globose and formed in clusters. These morphological characteristics of the isolate KW5 are characteristic of Fusarium equiseti (1). For molecular identification, the ITS of ribosomal DNA, β-tubulin, and EF-1α genes were amplified using the ITS4/ITS5 (5), T1/T2 (2), and EF1/EF2 (3) primer pairs. These sequences were deposited in GenBank (KF515650 for the ITS region; KF747330 for β-tubulin region, and KF747331 for EF-1α region) and showed 98 to 99% identity to F. equiseti strains (HQ332532 for ITS region, JX241676 for β-tubulin gene, and GQ505666 for EF-1α region). According to both morphological and sequences analysis, the pathogen of the black stem of A. marina was identified as F. equiseti. Similar symptoms on absorbing rootlets and trunks of A. marina had been reported in central coastal Queensland, but the pathogen was identified as Phytophthora sp. (4). Therefore, the disease reported in this paper differs from that reported in central coastal Queensland. To our knowledge, this is the first report of black stems of A. marina caused by F. equiseti in China. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, 1st ed. Wiley-Blackwell, Hoboken, NJ, 2006. (2) K. O'Donnell and E. Cigelnik. Mol. Phylogenet. Evol. 7:103, 1997. (3) K. O'Donnell et al. Proc. Natl. Acad. Sci. USA. 95:2044, 1998. (4) K. G. Pegg. Aust et al. Plant Pathol. 3:6, 1980. (5) A. W. Zhang et al. Plant Dis. 81:1143, 1997.


Sign in / Sign up

Export Citation Format

Share Document