scholarly journals Trans-ethnic meta-analysis identifies new loci associated with longitudinal blood pressure traits

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mateus H. Gouveia ◽  
Amy R. Bentley ◽  
Hampton Leonard ◽  
Karlijn A. C. Meeks ◽  
Kenneth Ekoru ◽  
...  

AbstractGenome-wide association studies (GWAS) have identified thousands of genetic loci associated with cross-sectional blood pressure (BP) traits; however, GWAS based on longitudinal BP have been underexplored. We performed ethnic-specific and trans-ethnic GWAS meta-analysis using longitudinal and cross-sectional BP data of 33,720 individuals from five cohorts in the US and one in Brazil. In addition to identifying several known loci, we identified thirteen novel loci with nine based on longitudinal and four on cross-sectional BP traits. Most of the novel loci were ethnic- or study-specific, with the majority identified in African Americans (AA). Four of these discoveries showed additional evidence of association in independent datasets, including an intergenic variant (rs4060030, p = 7.3 × 10–9) with reported regulatory function. We observed a high correlation between the meta-analysis results for baseline and longitudinal average BP (rho = 0.48). BP trajectory results were more correlated with those of average BP (rho = 0.35) than baseline BP(rho = 0.18). Heritability estimates trended higher for longitudinal traits than for cross-sectional traits, providing evidence for different genetic architectures. Furthermore, the longitudinal data identified up to 20% more BP known associations than did cross-sectional data. Our analyses of longitudinal BP data in diverse ethnic groups identified novel BP loci associated with BP trajectory, indicating a need for further longitudinal GWAS on BP and other age-related traits.

Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Myriam Fornage ◽  
Daokun Sun ◽  
Melissa A Richard ◽  
Solomon K Musani ◽  
Yun Ju Sung ◽  
...  

Background: Genome-wide association studies (GWAS) have identified hundreds of genetic loci for blood pressure (BP) traits and advanced our understanding of BP regulation and hypertension etiology. Psychological and social factors are known to influence BP and risk of cardiovascular diseases. Accounting for psychosocial factors may help identify BP loci and extend our knowledge of its genetic architecture. Methods: To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptomatology, trait anxiety, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from 5 ancestry groups. Results: In the combined meta-analyses of Stages 1 and 2, we identified 59 loci (p <5e-8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response ( PLCL2 ), synaptic function and neurotransmission ( LIN7A, PFIA2 ), as well as genes previously implicated in neuropsychiatric or stress-related disorders ( FSTL5, CHODL ). Conclusion: These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ekaterina Yonova-Doing ◽  
Wanting Zhao ◽  
Robert P. Igo ◽  
Chaolong Wang ◽  
Periasamy Sundaresan ◽  
...  

AbstractNuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 10−19), TMPRSS5 (rs4936279, P = 2.5 × 10−10), LINC01412 (rs16823886, P = 1.3 × 10−9), GLTSCR1 (rs1005911, P = 9.8 × 10−9), and COMMD1 (rs62149908, P = 1.2 × 10−8). The results suggest a strong link of age-related nuclear cataract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye.


2021 ◽  
Author(s):  
Minako Imamura ◽  
Atsushi Takahashi ◽  
Masatoshi Matsunami ◽  
Momoko Horikoshi ◽  
Minoru Iwata ◽  
...  

Abstract Several reports have suggested that genetic susceptibility contributes to the development and progression of diabetic retinopathy. We aimed to identify genetic loci that confer susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. We analysed 5 790 508 single nucleotide polymorphisms (SNPs) in 8880 Japanese patients with type 2 diabetes, 4839 retinopathy cases and 4041 controls, as well as 2217 independent Japanese patients with type 2 diabetes, 693 retinopathy cases, and 1524 controls. The results of these two genome-wide association studies (GWAS) were combined with an inverse variance meta-analysis (Stage-1), followed by de novo genotyping for the candidate SNP loci (p &lt; 1.0 × 10−4) in an independent case–control study (Stage-2, 2260 cases and 723 controls). After combining the association data (Stage-1 and -2) using meta-analysis, the associations of two loci reached a genome-wide significance level: rs12630354 near STT3B on chromosome 3, p = 1.62 × 10−9, odds ratio (OR) = 1.17, 95% confidence interval (CI) 1.11–1.23, and rs140508424 within PALM2 on chromosome 9, p = 4.19 × 10−8, OR = 1.61, 95% CI 1.36–1.91. However, the association of these two loci were not replicated in Korean, European, or African American populations. Gene-based analysis using Stage-1 GWAS data identified a gene-level association of EHD3 with susceptibility to diabetic retinopathy (p = 2.17 × 10−6). In conclusion, we identified two novel SNP loci, STT3B and PALM2, and a novel gene, EHD3, that confers susceptibility to diabetic retinopathy; however, further replication studies are required to validate these associations.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Oguri ◽  
K Kato ◽  
H Horibe ◽  
T Fujimaki ◽  
J Sakuma ◽  
...  

Abstract Background The circulating concentrations of triglycerides, high density lipoprotein (HDL)-cholesterol, and low density lipoprotein (LDL)-cholesterol have a substantial genetic component. Although previous genome-wide association studies identified various genes and loci related to plasma lipid levels, those studies were conducted in a cross-sectional manner. Purpose The purpose of the study was to identify genetic variants that confer susceptibility to hypertriglyceridemia, hypo-HDL-cholesterolemia, and hyper-LDL-cholesterolemia in Japanese. We have now performed longitudinal exome-wide association studies (EWASs) to identify novel loci for dyslipidemia by examining temporal changes in serum lipid profiles. Methods Longitudinal EWASs (mean follow-up period, 5 years) for hypertriglyceridemia (2056 case, 3966 controls), hypo-HDL-cholesterolemia (698 cases, 5324 controls), and hyper-LDL-cholesterolemia (2769 cases, 3251 controls) were performed with Illumina Human Exome arrays. The relation of genotypes of 24,691 single nucleotide polymorphisms (SNPs) that passed quality control to dyslipidemia-related traits was examined with the generalized estimating equation (GEE). To compensate for multiple comparisons of genotypes with each of the three conditions, we applied Bonferroni's correction for statistical significance of association. Replication studies with cross-sectional data were performed for hypertriglyceridemia (2685 cases, 4703 controls), hypo-HDL-cholesterolemia (1947 cases, 6146 controls), and hyper-LDL-cholesterolemia (1719 cases, 5833 controls). Results Longitudinal EWASs revealed that 30 SNPs were significantly (P&lt;2.03 × 10–6 by GEE) associated with hypertriglyceridemia, 46 SNPs with hypo-HDL-cholesterolemia, and 25 SNPs with hyper-LDL-cholesterolemia. After examination of the relation of identified SNPs to serum lipid profiles, linkage disequilibrium, and results of the previous genome-wide association studies, we newly identified rs74416240 of TCHP, rs925368 of GIT2, rs7969300 of ATXN2, and rs12231744 of NAA25 as a susceptibility loci for hypo-HDL-cholesterolemia; and rs34902660 of SLC17A3 and rs1042127 of CDSN for hyper-LDL-cholesterolemia. These SNPs were not in linkage disequilibrium with those previously reported to be associated with dyslipidemia, indicating independent effects of the SNPs identified in the present study on serum concentrations of HDL-cholesterol or LDL-cholesterol in Japanese. According to allele frequency data from the 1000 Genomes project database, five of the six identified SNPs were monomorphic or rare variants in European populations. In the replication study, all six SNPs were associated with dyslipidemia-related phenotypes. Conclusion We have thus identified six novel loci that confer susceptibility to hypo-HDL-cholesterolemia or hyper-LDL-cholesterolemia. Determination of genotypes for these SNPs at these loci may prove informative for assessment of the genetic risk for dyslipidemia in Japanese. Funding Acknowledgement Type of funding source: None


Sign in / Sign up

Export Citation Format

Share Document