scholarly journals High-dimensional hepatopath data analysis by machine learning for predicting HBV-related fibrosis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiangke Pu ◽  
Danni Deng ◽  
Chaoyi Chu ◽  
Tianle Zhou ◽  
Jianhong Liu

AbstractChronic HBV infection, the main cause of liver cirrhosis and hepatocellular carcinoma, has become a global health concern. Machine learning algorithms are particularly adept at analyzing medical phenomenon by capturing complex and nonlinear relationships in clinical data. Our study proposed a predictive model on the basis of 55 routine laboratory and clinical parameters by machine learning algorithms as a novel non-invasive method for liver fibrosis diagnosis. The model was further evaluated on the accuracy and rationality and proved to be highly accurate and efficient for the prediction of HBV-related fibrosis. In conclusion, we suggested a potential combination of high-dimensional clinical data and machine learning predictive algorithms for the liver fibrosis diagnosis.

Pain Medicine ◽  
2015 ◽  
Vol 16 (7) ◽  
pp. 1386-1401 ◽  
Author(s):  
Patrick J. Tighe ◽  
Christopher A. Harle ◽  
Robert W. Hurley ◽  
Haldun Aytug ◽  
Andre P. Boezaart ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Giovanna Sannino ◽  
Ivanoe De Falco ◽  
Giuseppe De Pietro

One of the most important physiological parameters of the cardiovascular circulatory system is Blood Pressure. Several diseases are related to long-term abnormal blood pressure, i.e., hypertension; therefore, the early detection and assessment of this condition are crucial. The identification of hypertension, and, even more the evaluation of its risk stratification, by using wearable monitoring devices are now more realistic thanks to the advancements in Internet of Things, the improvements of digital sensors that are becoming more and more miniaturized, and the development of new signal processing and machine learning algorithms. In this scenario, a suitable biomedical signal is represented by the PhotoPlethysmoGraphy (PPG) signal. It can be acquired by using a simple, cheap, and wearable device, and can be used to evaluate several aspects of the cardiovascular system, e.g., the detection of abnormal heart rate, respiration rate, blood pressure, oxygen saturation, and so on. In this paper, we take into account the Cuff-Less Blood Pressure Estimation Data Set that contains, among others, PPG signals coming from a set of subjects, as well as the Blood Pressure values of the latter that is the hypertension level. Our aim is to investigate whether or not machine learning methods applied to these PPG signals can provide better results for the non-invasive classification and evaluation of subjects’ hypertension levels. To this aim, we have availed ourselves of a wide set of machine learning algorithms, based on different learning mechanisms, and have compared their results in terms of the effectiveness of the classification obtained.


2020 ◽  
Vol 7 (2) ◽  
pp. 129-134
Author(s):  
Takudzwa Fadziso

In modern times, the collection of data is not a big deal but using it in a meaningful is a challenging task. Different organizations are using artificial intelligence and machine learning for collecting and utilizing the data. These should also be used in the medical because different disease requires the prediction. One of these diseases is asthma that is continuously increasing and affecting more and more people. The major issue is that it is difficult to diagnose in children. Machine learning algorithms can help in diagnosing it early so that the doctors can start the treatment early. Machine learning algorithms can perform this prediction so this study will be helpful for both the doctors and patients. There are different machine learning predictive algorithms are available that have been used for this purpose.  


Author(s):  
Qianfan Wu ◽  
Adel Boueiz ◽  
Alican Bozkurt ◽  
Arya Masoomi ◽  
Allan Wang ◽  
...  

Predicting disease status for a complex human disease using genomic data is an important, yet challenging, step in personalized medicine. Among many challenges, the so-called curse of dimensionality problem results in unsatisfied performances of many state-of-art machine learning algorithms. A major recent advance in machine learning is the rapid development of deep learning algorithms that can efficiently extract meaningful features from high-dimensional and complex datasets through a stacked and hierarchical learning process. Deep learning has shown breakthrough performance in several areas including image recognition, natural language processing, and speech recognition. However, the performance of deep learning in predicting disease status using genomic datasets is still not well studied. In this article, we performed a review on the four relevant articles that we found through our thorough literature review. All four articles used auto-encoders to project high-dimensional genomic data to a low dimensional space and then applied the state-of-the-art machine learning algorithms to predict disease status based on the low-dimensional representations. This deep learning approach outperformed existing prediction approaches, such as prediction based on probe-wise screening and prediction based on principal component analysis. The limitations of the current deep learning approach and possible improvements were also discussed.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 461
Author(s):  
Mujeeb Ur Rehman ◽  
Arslan Shafique ◽  
Kashif Hesham Khan ◽  
Sohail Khalid ◽  
Abdullah Alhumaidi Alotaibi ◽  
...  

This article presents non-invasive sensing-based diagnoses of pneumonia disease, exploiting a deep learning model to make the technique non-invasive coupled with security preservation. Sensing and securing healthcare and medical images such as X-rays that can be used to diagnose viral diseases such as pneumonia is a challenging task for researchers. In the past few years, patients’ medical records have been shared using various wireless technologies. The wireless transmitted data are prone to attacks, resulting in the misuse of patients’ medical records. Therefore, it is important to secure medical data, which are in the form of images. The proposed work is divided into two sections: in the first section, primary data in the form of images are encrypted using the proposed technique based on chaos and convolution neural network. Furthermore, multiple chaotic maps are incorporated to create a random number generator, and the generated random sequence is used for pixel permutation and substitution. In the second part of the proposed work, a new technique for pneumonia diagnosis using deep learning, in which X-ray images are used as a dataset, is proposed. Several physiological features such as cough, fever, chest pain, flu, low energy, sweating, shaking, chills, shortness of breath, fatigue, loss of appetite, and headache and statistical features such as entropy, correlation, contrast dissimilarity, etc., are extracted from the X-ray images for the pneumonia diagnosis. Moreover, machine learning algorithms such as support vector machines, decision trees, random forests, and naive Bayes are also implemented for the proposed model and compared with the proposed CNN-based model. Furthermore, to improve the CNN-based proposed model, transfer learning and fine tuning are also incorporated. It is found that CNN performs better than other machine learning algorithms as the accuracy of the proposed work when using naive Bayes and CNN is 89% and 97%, respectively, which is also greater than the average accuracy of the existing schemes, which is 90%. Further, K-fold analysis and voting techniques are also incorporated to improve the accuracy of the proposed model. Different metrics such as entropy, correlation, contrast, and energy are used to gauge the performance of the proposed encryption technology, while precision, recall, F1 score, and support are used to evaluate the effectiveness of the proposed machine learning-based model for pneumonia diagnosis. The entropy and correlation of the proposed work are 7.999 and 0.0001, respectively, which reflects that the proposed encryption algorithm offers a higher security of the digital data. Moreover, a detailed comparison with the existing work is also made and reveals that both the proposed models work better than the existing work.


Sign in / Sign up

Export Citation Format

Share Document