scholarly journals A theorized new class of polyhedral hydrocarbons of molecular formula CnHn and their bottom-up scaffold expansions into hyperstructures

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camila M. B. Machado ◽  
Nathalia B. D. Lima ◽  
Sóstenes L. S. Lins ◽  
Alfredo M. Simas

AbstractWe address the use of Euler's theorem and topological algorithms to design 18 polyhedral hydrocarbons of general formula CnHn that exist up to 28 vertexes containing four- and six-membered rings only; compounds we call “nuggets”. Subsequently, we evaluated their energies to verify the likelihood of their chemical existence. Among these compounds, 13 are novel systems, of which 3 exhibit chirality. Further, the ability of all nuggets to perform fusion reactions either through their square faces, or through their hexagonal faces was evaluated. Indeed, they are potentially able to form bottom-up derived molecular hyperstructures with great potential for several applications. By considering these fusion abilities, the growth of the nuggets into 1D, 2D, and 3D-scaffolds was studied. The results indicate that nugget24a (C24H24) is predicted to be capable of carrying out fusion reactions. From nugget24a, we then designed 1D, 2D, and 3D-scaffolds that are predicted to be formed by favorable fusion reactions. Finally, a 3D-scaffold generated from nugget24a exhibited potential to be employed as a voxel with a chemical structure remarkably similar to that of MOF ZIF-8. And, such a voxel, could in principle be employed to generate any 3D sculpture with nugget24a as its level of finest granularity.

2018 ◽  
Author(s):  
Erik Leonhardt ◽  
Jeff M. Van Raden ◽  
David Miller ◽  
Lev N. Zakharov ◽  
Benjamin Aleman ◽  
...  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically-precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid-state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical “forests” of these arrays on a highly-ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.


2019 ◽  
Vol 48 (24) ◽  
pp. 8578-8593 ◽  
Author(s):  
Ziga Ude ◽  
Kevin Kavanagh ◽  
Brendan Twamley ◽  
Milan Pour ◽  
Nicholas Gathergood ◽  
...  

A family of metallo-antibiotics of general formula [Cu(N,N)(CipA)Cl] where N,N is a phenanthrene ligand and CipA is a derivative of the clinically used fluoroquinolone antibiotic ciprofloxacin – targeting immunocompromised cancer patients undergoing chemotherapy.


Author(s):  
Richard V. Beblo ◽  
Lisa Mauck Weiland

Presented is a multiscale modeling method applied to light activated shape memory polymers (LASMP). LASMP are a new class of shape memory polymer (SMP) being developed for applications where a thermal stimulus is undesired. Rotational Isomeric State (RIS) theory is used to build a molecular scale model of the polymer chain yielding a list of distances between the predicted cross-link locations, or r-values. The r-values are then fit with Johnson probability density functions and used with Boltzmann statistical mechanics to predict stress as a function of strain of the phantom network. Junction constraint theory is then used to calculate the stress contribution due to interactions with neighboring chains, resulting in previously unattainable numerically accurate Young’s modulus predictions based on the molecular formula of the polymer. The system is modular in nature and thus lends itself well to being adapted for specific applications. The results of the model are presented with experimental data for confirmation of correctness along with discussion of the potential of the model to be used to computationally adjust the chemical composition of LASMP to achieve specified material characteristics, greatly reducing the time and resources required for formula development.


2020 ◽  
Vol 56 (45) ◽  
pp. 6035-6038 ◽  
Author(s):  
Toshiki Fujii ◽  
Susumu Tanaka ◽  
Shotaro Hayashi ◽  
Hiroaki Imoto ◽  
Kensuke Naka

Dipyridinoarsole, having high air-stability and electrochemical reversibility, has been experimentally and computationally studied. The chemical structure was selectively modified to tune the absorption and emission wavelengths and to realize electrochromism.


2015 ◽  
Vol 3 (23) ◽  
pp. 5976-5984 ◽  
Author(s):  
Yubin Song ◽  
Shoujun Zhu ◽  
Shitong Zhang ◽  
Yu Fu ◽  
Li Wang ◽  
...  

We clarified the chemical structure of typical “bottom-up” CDs and proved that IPCA is the molecular state photoluminescence center.


Robotica ◽  
2005 ◽  
Vol 23 (4) ◽  
pp. 435-439 ◽  
Author(s):  
Kenneth Castelino ◽  
Srinath Satyanarayana ◽  
Metin Sitti

Optical tweezers have been used as versatile tools for non-contact manipulation of micrometer-sized entities. This paper proposes a hybrid micro/nanoscale manufacturing system using optical tweezers and chemical linkages for fabricating 2D and 3D micro/nanostructures. A holographic multiple trap optical tweezers system is first used to trap particles in a desired pattern. The particles are then connected to form rigid units using suitable chemistry. Connection schemes based on gold seeding, complementary-DNA linkage and streptavidin-biotin chemistry are presented and possible applications of this technique are explored. This method combines the advantages of top-down and bottom-up approaches and is compatible with organic and inorganic materials.


2012 ◽  
Vol 11 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Rutvik J. Mehta ◽  
Yanliang Zhang ◽  
Chinnathambi Karthik ◽  
Binay Singh ◽  
Richard W. Siegel ◽  
...  

2020 ◽  
Vol 73 (5) ◽  
pp. 320-323
Author(s):  
Christopher Sarmales-Murga ◽  
Fumito Akaoka ◽  
Michio Sato ◽  
Jun Takanishi ◽  
Takashi Mino ◽  
...  

2018 ◽  
Author(s):  
Erik Leonhardt ◽  
Jeff M. Van Raden ◽  
David Miller ◽  
Lev N. Zakharov ◽  
Benjamin Aleman ◽  
...  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically-precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid-state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical “forests” of these arrays on a highly-ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.


Sign in / Sign up

Export Citation Format

Share Document