scholarly journals Solvent assisted evolution and growth mechanism of zero to three dimensional ZnO nanostructures for dye sensitized solar cell applications

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Ramya ◽  
T. K. Nideep ◽  
V. P. N. Nampoori ◽  
M. Kailasnath

AbstractWe report the structural engineering of ZnO nanostructures by a consistent solution method using distinct solvents such as ethylene glycol, 1-butanol, acetic acid and water. The growth kinetics are found to depend strongly on the physicochemical properties of the solvent and zeta potential of the colloidal solution. Furthermore, the resulting nanostructures as a photoanode material, displayed a prominent structure dependent property in determining the efficiency of dye-sensitized solar cells (DSSCs). The fabricated solar cell with ZnO nanostructures based photoanode exhibited improved conversion efficiency. Moreover, the nanoflower based DSSCs showed a higher conversion efficiency of 4.1% compared to the other structures. The excellent performance of ZnO nanoflower is attributed to its better light-harvesting ability and increased resistance to charge-recombination. Therefore ZnO nanostructures can be a promising alternative for TiO2 in DSSCs. These findings provide new insight into the simple, low cost and consistent synthetic strategies for ZnO nanostructures and its outstanding performance as a photoanode material in DSSCs.

Nanoscale ◽  
2014 ◽  
Vol 6 (23) ◽  
pp. 14433-14440 ◽  
Author(s):  
Sheng-qi Guo ◽  
Tian-zeng Jing ◽  
Xiao Zhang ◽  
Xiao-bing Yang ◽  
Zhi-hao Yuan ◽  
...  

In this work, we report the synthesis of mesoporous Bi2S3 nanorods under hydrothermal conditions without additives, and investigated their catalytic activities as the CE in DSCs by I–V curves and tested conversion efficiency.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


2012 ◽  
Vol 629 ◽  
pp. 332-338 ◽  
Author(s):  
Zhi Hua Tian ◽  
Jian Xi Yao ◽  
Mi Na Guli

TiO2 films with three-dimensional web-like structure have been prepared by the photo polymerization-induced phase separation method (PIPS). Scanning electron microscopy and X-ray diffraction were used to characterize the as-prepared TiO2 films. The results showed that the film texture could be tuned by changing the composition of the precursor solution. The TiO2 film with web-like structure exhibited high photocatalytic activity for the degradation of methylene blue (MB) dye. The as-prepared films were used as the photo-anodes in dye-sensitized solar cells (DSCs). The photoelectric conversion efficiency of the DSCs was significantly enhanced by changing the POGTA/TTB in the precursor solution. Because of the increased dye adsorption active sites and efficient electron transport in the TiO2 anode film, a photoelectric conversion efficiency of 3.015% was obtained.


2021 ◽  
Vol 5 (11) ◽  
pp. 288
Author(s):  
José A. Castillo-Robles ◽  
Enrique Rocha-Rangel ◽  
José A. Ramírez-de-León ◽  
Frida C. Caballero-Rico ◽  
Eddie N. Armendáriz-Mireles

Human beings are attempting to take advantage of renewable natural resources by using solar cells. These devices take the sun’s radiation and convert it into electrical energy. The issue with traditional silicon-based solar cells is their manufacturing costs and environmental problems. For this reason, alternatives have been developed within the solar cell field. One of these alternatives is the dye-sensitized solar cell (DSSC), also known as Grätzel solar cells. DSSCs are a type of solar cell that mimics photosynthesis. They have a photoanode, which is formed by a semiconductor film sensitized with a dye. Some of their advantages include low-cost manufacturing, eco-friendly materials use, and suitability for most environments. This review discusses four important aspects, with two related to the dye, which can be natural or synthetic. Herein, only natural dyes and their extraction methods were selected. On the other hand, this paper discusses the nanostructures used for DSSCs, the TiO2 nanostructure being the most reported; it recently reached an efficiency level of 10.3%. Finally, a review on the novelties in DSSCs technology is presented, where it is observed that the use of Catrin protein (cow brain) shows 1.45% of efficiency, which is significantly lower if compared to Ag nanoparticles doped with graphene that report 9.9% efficiency.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 57 ◽  
Author(s):  
Yuya Ogata ◽  
Kodai Iguchi ◽  
Takahide Oya

We propose a paper solar cell based on carbon nanotube (CNT)-composite papers. To fabricate this cell, we use dye-sensitized solar cells (DSCs) for generating power through the redox reaction of dyes in conjunction with CNT-composite papers, which are composite materials containing CNTs and pulp (raw paper material) that can be fabricated easily by using a method based on the Japanese washi papermaking technique. The demand for CNT applications is expected to increase due to their high conductivity and metallic or semiconducting characteristics. This CNT-composite paper can also have metallic or semiconducting characteristics based on the contained CNTs in the composite paper. We previously fabricated a DSC that generates electricity by using CNT-composite papers stacked in a typical DSC structure. However, the conversion efficiency of this DSC was just 0.188%, which is not practical. To overcome this low power generation issue, we tried improving the DSC structure by applying electrodes to the CNT-composite papers in grid patterns for efficient current collection and applying an optimally mixed dye for efficient electron excitation. Results showed that the conversion efficiency improved to 0.58%. Moreover, we demonstrated that using a mixed dye can improve the conversion efficiency of the paper DSC. We expect these types of CNT-composite papers to be used as material for new DSCs.


2021 ◽  
Vol 1028 ◽  
pp. 151-156
Author(s):  
Ayunita Chintia Celline ◽  
Astria Yuliani Subagja ◽  
Sri Suryaningsih ◽  
Annisa Aprilia ◽  
Lusi Safriani

Dye-sensitized solar cells (DSSC) are solar cells that has a great potential to be applied as renewable energy conversion. The major advantages of DSSC are the ease of fabrication process and low cost of production. Despite of these advantages, the efficiency of DSSC for converting light into electricity is still low. It is due to charge recombination in DSSC which limits the photoanode performance. Numerous efforts has been carried out to increase the efficiency of DSSC, one of which is by adding reduced graphene oxide (rGO) to titanium oxide (TiO2) to obtain TiO2-rGO nanocomposite. In this study, the synthesis of TiO2-rGO nanocomposites was carried out with concentration of rGO are 0.6, 0.8, and 1.0 wt% to amount of TiO2. We have done some characterizations to confirm the result of synthesized TiO2-rGO. UV-Vis measurement shows the addition of rGO has widened the absorption up to 400 nm. The FT-IR spectrum confirms that the rGO peaks appears at wavelength of 1400, 1600, dan 1700 cm-1 which exhibited the vibration C-O, C=C, and C=O stretching from COOH groups, respectively. The highest efficiency of DSSC with photoanode TiO2-rGO nanocomposite is 0.09% which was obtained from 0.8 wt% of rGO.


2012 ◽  
Vol 512-515 ◽  
pp. 1609-1613
Author(s):  
Jing Jing Gao ◽  
Bo Li ◽  
Zhen Dong Liu ◽  
Xing Jian Jiao ◽  
Ji Zhou ◽  
...  

Because of the features of photonic localization in photonic bandgap(PBG), the photonic crystals can be coupled to DSSC to increase the conversion efficiency. In this paper, through exploring the preparation of large inverse opal structure of ZnO, we attempt to apply the photonic crystals to the Dye-Sensitized Solar Cells (DSSC) to improve its efficiency. The colloidal crystal template is prepared by self-assembled on FTO substrates, and three-dimensional ZnO inverse opal is synthesized via an electrochemical deposition method in zinc nitrate solution. Then we study the inflations of its surface morphology and photonic bandgap on the solar cell’s photoelectric conversion efficiency.


2007 ◽  
Vol 336-338 ◽  
pp. 2337-2339
Author(s):  
Jun Hui Xiang ◽  
Zhi Zhang ◽  
Fu Shi Zhang ◽  
Shoji Kaneko ◽  
Masayuki Okuya ◽  
...  

For the first time, it was found that low-valence additives could be employed to improve the conversion efficiency of dye sensitized solar cell. It was experimentally discovered that by forming nonstoichiometric compound, Ti3+ was located in the lattice of TiO2 film, generating surplus electrons within the film and affecting the morphology of TiO2 particle. The improvement of the conversion efficiency of the solar cell was mainly due to the increase of short circuit current along with the content of Ti3+. The surface of the TiO2 particle became more coarsely after TiCl3 added and the absorbed dye molecules was increased. It was another reason of the improvement of conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document