scholarly journals Enhancing flotation separation of chalcopyrite and magnesium silicate minerals by surface synergism between PAAS and GA

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiqiang Chen ◽  
Yanhong Wang ◽  
Liqun Luo ◽  
Tiefeng Peng ◽  
Feng Guo ◽  
...  

AbstractSeparation effects of sodium polyacrylate (PAAS) and gum Arabic (GA) on flotation of chalcopyrite and magnesium silicate minerals using potassium butyl xanthate (PBX) as collector were investigated by micro-flotation experiments, zeta potential, Infrared spectral (IR), SEM–EDS, XPS analysis and copper sulphide ore beneficiation test. The micro-flotation experiments and zeta potential measurements showed that combined depressant consisting of PAAS and GA could efficiently reduce the recoveries of mixed minerals of serpentine and talc more than 25%, while that of chalcopyrite remained above 70% at pH 9.2. Infrared spectral (IR), SEM–EDS and XPS analysis showed that PAAS chemically reacted with Mg on the surface of serpentine, while GA adsorbed on talc surface mainly via physical interaction and hydrogen bond may also play a role. Surface synergism between PAAS and GA was investigated by turbidity test and its depression mechanism was proposed. The technology feasibility of using PAAS and GA to improve the copper sulphide ore flotation performance was verified through artificial mixed ore flotation and laboratory closed-flotation operation.

2008 ◽  
Vol 26 (5) ◽  
pp. 293-309 ◽  
Author(s):  
K. Baris ◽  
A. Ozarslan ◽  
N. Sahin

This paper examines the CO2 sequestration potential of magnesium silicate minerals in Turkey for two example cases, the Orhaneli-Bursa and Divrigi-Sivas regions. The distribution and properties of the silicate mineral deposits are provided and the quantities of CO2 that can be sequestered in these deposits is estimated. The silicate minerals in the Orhaneli and Divrigi deposits provide significant CO2 sequestration capacity. Assuming 100% mineral carbonation efficiency, approximately 2.4 million tons/year of olivine and 6.5 million tons/year of serpentine would be required to sequester the CO2 released by the power plants investigated in this study. Although more detailed studies are needed, it is concluded that this approach has potential given Turkey's large dunite (olivine) and serpentine reserves. Furthermore, the proximity of these deposits and active open-pit mines to thermal power plants emitting CO2 facilitate the utilization of mineral carbonation.


2011 ◽  
Vol 24 (12) ◽  
pp. 1335-1339 ◽  
Author(s):  
Boris Albijanic ◽  
Eiman Amini ◽  
Elaine Wightman ◽  
Orhan Ozdemir ◽  
Anh V. Nguyen ◽  
...  

Food Research ◽  
2020 ◽  
Vol 4 (S2) ◽  
pp. 19-23
Author(s):  
M.S. Barre ◽  
F.B. Ali ◽  
M.E.S. Mirghani ◽  
N.F. Hazri ◽  
H. Anuar ◽  
...  

Boswellia carterii (BC) {Burseraceae family} essential oil (EO) were extracted by hydrodistillation process. Gum Arabic (GA) {Acacia senegal} polymer particles containing a BCEO were prepared by spray drying technique. The mean particle size and its distribution, as well as the zeta-potential of the microcapsules, were analyzed and found Z-Average 382±203nm, PDI 0.77±0.3, ZP-25±2.73mV, respectively. Product encapsulation efficiency (EE %) was found at 75±0.8%. The surface morphology of the particles was obtained by scanning electron microscope (SEM). Furthermore, particles moisture content was analyzed by the oven drying method. The efficiency of encapsulation (EE %) was estimated by specifying the content of essential oil in the product. Gas chromatography (GC) coupled with time-of-flight mass spectrometry (TOFMS) analysis of EO has been performed to determine the chemical compounds and their prevalence concentrations respectively. The composition of initial essential oil (added in the emulsion) and the encapsulated essential oil (extracted from spray dried powder) were analyzed and compared. The outcome of the research encourages the high potentiality and usefulness of the product in the food industries sector as a food additive agent, moreover, it suggests for further research to unravel potential implementation of BCEO microcapsules in the food production chain


2021 ◽  
Vol 72 (1) ◽  
pp. 18-24
Author(s):  
Noor Sabeeh Majeed ◽  
Hussein A. Alabdly ◽  
Hussam Nadum Abdalraheem Al Ani ◽  
Dumitru Pascu ◽  
Aurelia Cristina Nechifor

Stability of nanofluids is one of the most important factors to ensure the most benefit of the properties of nanoparticles. Zinc oxide was used in the research with concentration between (0.2-1) wt. % with ethylene glycol base fluid. The stability of ZnO nanofluid was enhanced by adding two types of surfactants Tx-100 and Gum Arabic with concentration of (0.1-0.5) vol. % to stabilize the ZnO nanoparticles in the base fluid. The results showed that the Gum Arabic surfactant led to more stable fluid than that of Tx-100; this was shown from zeta potential and UV spectroscopy measurements. The thermal conductivity coefficient was also measured, and the results showed that the thermal conductivity increased with adding surfactant than without using a stabilizer.


2003 ◽  
Vol 71 (1-2) ◽  
pp. 67-74 ◽  
Author(s):  
M Sidborn ◽  
J Casas ◽  
J Martı́nez ◽  
L Moreno

2007 ◽  
Vol 20-21 ◽  
pp. 539-542 ◽  
Author(s):  
Francisco Remonsellez ◽  
F. Galleguillos ◽  
Sonestie Janse van Rensburg ◽  
G.F. Rautenbach ◽  
Pedro A. Galleguillos ◽  
...  

Microbial heap bioleaching is being used as an industrial process to recover copper from low grade ores. It is known that a consortium of different microorganisms participates in this process. Therefore identification and quantification of communities inhabiting heap bioleaching operations is a key step for understanding the dynamics and role of these microorganisms in the process. A quantitative real-time PCR approach was used to investigate the microbial dynamics in this process. To study the microbial population inhabiting a low-grade copper sulphide ore bioleaching industrial heap process at Escondida Mine in Chile, 16S rRNA genetic libraries were constructed using bacterial and archaeal universal primers. Phylogenetic analyses of sequences retrieved from genetic libraries showed that the community is mainly composed by microoganisms related to Acidithiobacillus ferrooxidans (2 strains), Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans, Leptospirillum ferriphilum and the archaea Ferroplasma. Specific primers for real-time PCR determination were designed and tested to amplify each of the sequences obtained by cloning. Standard curves for real time PCR were performed using plasmid DNA from selected clones. This methodology is actually being used to monitor relevant microorganisms inhabiting this low-grade copper sulphide ore bioleaching industrial heap.


Sign in / Sign up

Export Citation Format

Share Document