scholarly journals Landscape structure affects the sunflower visiting frequency of insect pollinators

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Károly Lajos ◽  
Ferenc Samu ◽  
Áron Domonkos Bihaly ◽  
Dávid Fülöp ◽  
Miklós Sárospataki

AbstractMass-flowering crop monocultures, like sunflower, cannot harbour a permanent pollinator community. Their pollination is best secured if both managed honey bees and wild pollinators are present in the agricultural landscape. Semi-natural habitats are known to be the main foraging and nesting areas of wild pollinators, thus benefiting their populations, whereas crops flowering simultaneously may competitively dilute pollinator densities. In our study we asked how landscape structure affects major pollinator groups’ visiting frequency on 36 focal sunflower fields, hypothesising that herbaceous semi-natural (hSNH) and sunflower patches in the landscape neighbourhood will have a scale-dependent effect. We found that an increasing area and/or dispersion of hSNH areas enhanced the visitation of all pollinator groups. These positive effects were scale-dependent and corresponded well with the foraging ranges of the observed bee pollinators. In contrast, an increasing edge density of neighbouring sunflower fields resulted in considerably lower visiting frequencies of wild bees. Our results clearly indicate that the pollination of sunflower is dependent on the composition and configuration of the agricultural landscape. We conclude that an optimization of the pollination can be achieved if sufficient amount of hSNH areas with good dispersion are provided and mass flowering crops do not over-dominate the agricultural landscape.

2019 ◽  
Vol 286 (1900) ◽  
pp. 20190387 ◽  
Author(s):  
Thijs P. M. Fijen ◽  
Jeroen A. Scheper ◽  
Bastiaen Boekelo ◽  
Ivo Raemakers ◽  
David Kleijn

Conserving and restoring semi-natural habitat, i.e. enhancing landscape complexity, is one of the main strategies to mitigate pollinator decline in agricultural landscapes. However, we still have limited understanding of how landscape complexity shapes pollinator communities in both crop and non-crop habitat, and whether pollinator responses to landscape complexity vary with their association with mass-flowering crops. Here, we surveyed pollinator communities on mass-flowering leek crops and in nearby semi-natural habitat in landscapes of varying complexity. Surveys were done before and during crop bloom and distinguished between pollinators that visit the crop frequently (dominant), occasionally (opportunistic), or not at all (non-crop). Forty-seven per cent of the species in the wider landscape were also observed on leek flowers. Crop pollinator richness increased with local pollinator community size and increasing landscape complexity, but relationships were stronger for opportunistic than for dominant crop pollinators. Relationships between pollinator richness in semi-natural habitats and landscape complexity differed between groups with the most pronounced positive effects on non-crop pollinators. Our results indicate that while dominant crop pollinators are core components of crop pollinator communities in all agricultural landscapes, opportunistic crop pollinators largely determine species-richness responses and complex landscapes are local hotspots for both biodiversity conservation and potential ecosystem service provision.


2021 ◽  
Author(s):  
Nicole Beyer ◽  
Felix Kirsch ◽  
Doreen Gabriel ◽  
Catrin Westphal

Abstract Context Pollinator declines and functional homogenization of farmland insect communities have been reported. Mass-flowering crops (MFC) can support pollinators by providing floral resources. Knowledge about how MFC with dissimilar flower morphology affect functional groups and functional trait compositions of wild bee communities is scarce. Objective We investigated how two morphologically different MFC, land cover and local flower cover of semi-natural habitats (SNH) and landscape diversity affect wild bees and their functional traits (body size, tongue length, sociality, foraging preferences). Methods We conducted landscape-level wild bee surveys in SNH of 30 paired study landscapes covering an oilseed rape (OSR) (Brassica napus L.) gradient. In 15 study landscapes faba beans (Vicia faba L.) were grown, paired with respective control landscapes without grain legumes. Results Faba bean cultivation promoted bumblebees (Bombus spp. Latreille), whereas non-Bombus densities were only driven by the local flower cover of SNH. High landscape diversity enhanced wild bee species richness. Faba bean cultivation enhanced the proportions of social wild bees, bees foraging on Fabaceae and slightly of long-tongued bumblebees. Solitary bee proportions increased with high covers of OSR. High local SNH flower covers mitigated changes of mean bee sizes caused by faba bean cultivation. Conclusions Our results show that MFC support specific functional bee groups adapted to their flower morphology and can alter pollinators` functional trait composition. We conclude that management practices need to target the cultivation of functionally diverse crops, combined with high local flower covers of diverse SNH to create heterogeneous landscapes, which sustain diverse pollinator communities.


2014 ◽  
Vol 83 (4) ◽  
pp. 325-351 ◽  
Author(s):  
Józef Banaszak ◽  
Halina Ratyńska

ABSTRACT Changes in communities of wild bees (Apiformes) were studied in relation to changes in vegetation in six permanent plots (natural forest habitats in the Wielkopolska National Park, and semi-natural habitats in the agricultural landscape near Turew) at the end of four decades (starting from the late 1970s). In 2008-2010, as many as 100 species of Apiformes were recorded there, which is more than reported in earlier decades. The most stable bee communities were those in forest habitats (oak-hornbeam forest, oak forest). Substantial qualitative and quantitative changes in vegetation and bee communities were recorded only after the renaturalisation of a former xerothermic grassland, which had become overgrown with shrubs and trees as a result of plant succession. Human interference (e.g. the felling of some trees growing along a road, clearance of understorey shrubs, ploughing of roadside margins) at selected refuge habitats in the agricultural landscape led to short-term fluctuations in bee abundance and diversity, but an increasing trend in abundance was noted.


2021 ◽  
Author(s):  
Patrizia Zamberletti ◽  
Khadija Sabir ◽  
Thomas Opitz ◽  
Olivier Bonnefon ◽  
Edith Gabriel ◽  
...  

AbstractIn agricultural landscapes, the amount and organization of crops and semi-natural habitats (SNH) have the potential to promote a bundle of ecosystem services due to their influence on ecological community at multiple spatio-temporal scales. SNH are relatively undisturbed and are often source of complementary resources and refuges, supporting more diverse and abundant natural pest enemies. However, the nexus of SNH proportion and organization with pest suppression is not trivial. It is thus crucial to understand how the behavior of pest and auxiliary species, the underlying landscape structure, and their interaction may influence conservation biological control (CBC). Here, we develop a generative stochastic landscape model to simulate realistic agricultural landscape compositions and configurations of fields and linear elements. Generated landscapes are used as spatial support over which we simulate a spatially explicit predator-prey dynamic model. We find that SNH boost predator population, but predator movement from hedges to fields is fundamental for an efficient pest regulation by auxiliaries and to decrease pesticide treatments. Moreover landscape elements may lead to different effects on pest reduction depending on the considered scale. Integration of species behaviors and traits with landscape structure at multiple scales are needed to provide useful insights for CBC.


2021 ◽  
Vol 14 ◽  
pp. 194008292110499
Author(s):  
Marisela Martínez-Ruiz ◽  
Miguel A. De Labra-Hernández ◽  
Fernando César Gonçalves Bonfim ◽  
Eliana Cazetta

Background and Research Aims: Habitat amount plays an important role in determining the presence and abundance of bird species in modified landscapes, whereas habitat fragmentation has shown little effects. Toucans (Ramphastidae) and parrots (Psittacidae) are large-bodied primary consumers and among the most representative birds in Neotropical forests. They are highly sensitive to habitat loss; nevertheless, their response to fragmentation has been poorly assessed leading to contradictory results. Here, we evaluate the influence of landscape structure on toucans and parrots in the tropical forest of Los Tuxtlas, Mexico. Methods: We censused birds in 12 landscapes of Los Tuxtlas and used a multi-scale landscape approach to assess the influence of landscape composition and configuration on the number of individuals of toucans and parrots. Results: We found that the most important and positive predictor of toucans and parrots was the amount of primary forest cover in the landscape. Forest fragmentation had positive effects on the number of toucan individuals, whereas parrots had negative responses to patch density but positive responses to edge density in the landscape. Conclusion: Our results suggest that primary forest loss is the main threat for toucans and parrots in Los Tuxtlas. Implications for conservation: Future conservation and land management must consider the protection of large and small remnants of primary forest and avoid additional forest loss in order to preserve toucan and parrots and their functional roles in human-modified Neotropical landscapes.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ehsan Rahimi ◽  
Shahindokht Barghjelveh ◽  
Pinliang Dong

Abstract Background The growing human population around the world is creating an increased demand for food. In agricultural landscapes, forests are cleared and turned into agricultural land to produce more food. Increasing the productivity of agricultural land per unit area may prevent extreme forest degradation. Since many agricultural products are dependent on pollinators, it is possible to increase crop production by increasing the pollination rate in the agricultural landscapes. Pollinators are highly dependent on forest patches in agricultural landscapes. Therefore, by creating new forest patches around agricultural fields, we can increase the pollination rate, and thus the crop production. In this regard, estimating the effects of different scenarios of forest fragmentation helps us to find an optimized pattern of forest patches for increasing pollination in an agricultural landscape. Methods To investigate the effect of different forest fragmentation scenarios on pollination, we used simulated agricultural landscapes, including different forest proportions and degrees of fragmentation. Using landscape metrics, we estimated the relationship between pollination and landscape structure for each landscape. Results Our results showed that for increasing pollination, two significant factors should be considered: habitat amount and capacity of small patches to supply pollination. We found that when the capacity of small patches in supplying pollination was low, fragmented patterns of forest patches decreased pollination. With increasing capacity, landscapes with a high degree of forest fragmentation showed the highest levels of pollination. There was an exception for habitat amounts (the proportion of forest patches) less than 0.1 of the entire landscape where increasing edge density, aggregation, and the number of forest patches resulted in increasing pollination in all scenarios. Conclusion This study encourages agriculturists and landscape planners to focus on increasing crop production per unit area by pollinators because it leads to biodiversity conservation and reduces socio-economic costs of land-use changes. We also suggest that to increase pollination in agricultural landscapes by creating new forest patches, special attention should be paid to the capacity of patches in supporting pollinators.


2020 ◽  
Vol 49 (6) ◽  
pp. 1393-1401
Author(s):  
Mario S Pinilla-Gallego ◽  
Emma E Williams ◽  
Abby Davis ◽  
Jacquelyn L Fitzgerald ◽  
Scott H McArt ◽  
...  

Abstract Parasites are commonly cited as one of the causes of population declines for both managed and wild bees. Epidemiological models sometimes assume that increasing the proportion of infected individuals in a group should increase transmission. However, social insects exhibit behaviors and traits which can dampen the link between parasite pressure and disease spread. Understanding patterns of parasite transmission within colonies of social bees has important implications for how to control diseases within those colonies, and potentially the broader pollinator community. We used bumble bees (Bombus impatiens Cresson) (Hymenoptera: Apidae) and western honey bees (Apis mellifera L.) (Hymenoptera: Apidae) infected with the gut parasites Crithidia bombi (Lipa & Triggiani) (Trypanosomatida: Trypanosomatidae) and Nosema ceranae (Fries et al.) (Dissociodihaplophasida: Nosematidae), respectively, to understand how the initial proportion of infected individuals impacts within-colony spread and intensity of infection of the parasites. In bumble bees, we found that higher initial parasite prevalence increased both the final prevalence and intensity of infection of C. bombi. In honey bees, higher initial prevalence increased the intensity of infection in individual bees, but not the final prevalence of N. ceranae. Measures that reduce the probability of workers bringing parasites back to the nest may have implications for how to control transmission and/or severity of infection and disease outbreaks, which could also have important consequences for controlling disease spread back into the broader bee community.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 122
Author(s):  
Anne Dalmon ◽  
Virgine Diévart ◽  
Maxime Thomasson ◽  
Romain Fouque ◽  
Bernard E. Vaissière ◽  
...  

Viruses are known to contribute to bee population decline. Possible spillover is suspected from the co-occurrence of viruses in wild bees and honey bees. In order to study the risk of virus transmission between wild and managed bee species sharing the same floral resource, we tried to maximize the possible cross-infections using Phacelia tanacetifolia, which is highly attractive to honey bees and a broad range of wild bee species. Virus prevalence was compared over two years in Southern France. A total of 1137 wild bees from 29 wild bee species (based on COI barcoding) and 920 honey bees (Apis mellifera) were checked for the seven most common honey bee RNA viruses. Halictid bees were the most abundant. Co-infections were frequent, and Sacbrood virus (SBV), Black queen cell virus (BQCV), Acute bee paralysis virus (ABPV) and Israeli acute paralysis virus (IAPV) were widespread in the hymenopteran pollinator community. Conversely, Deformed wing virus (DWV) was detected at low levels in wild bees, whereas it was highly prevalent in honey bees (78.3% of the samples). Both wild bee and honey bee virus isolates were sequenced to look for possible host-specificity or geographical structuring. ABPV phylogeny suggested a specific cluster for Eucera bees, while isolates of DWV from bumble bees (Bombus spp.) clustered together with honey bee isolates, suggesting a possible spillover.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009559
Author(s):  
Patrizia Zamberletti ◽  
Khadija Sabir ◽  
Thomas Opitz ◽  
Olivier Bonnefon ◽  
Edith Gabriel ◽  
...  

In agricultural landscapes, the amount and organization of crops and semi-natural habitats (SNH) have the potential to promote a bundle of ecosystem services due to their influence on ecological community at multiple spatio-temporal scales. SNH are relatively undisturbed and are often source of complementary resources and refuges, therefore supporting more diverse and abundant natural pest enemies. However, the nexus of SNH proportion and organization with pest suppression is not trivial. It is thus crucial to understand how the behavior of pest and natural enemy species, the underlying landscape structure, and their interaction, may influence conservation biological control (CBC). Here, we develop a generative stochastic landscape model to simulate realistic agricultural landscape compositions and configurations of fields and linear elements. Generated landscapes are used as spatial support over which we simulate a spatially explicit predator-prey dynamic model. We find that increased SNH presence boosts predator populations by sustaining high predator density that regulates and keeps pest density below the pesticide application threshold. However, predator presence over all the landscape helps to stabilize the pest population by keeping it under this threshold, which tends to increase pest density at the landscape scale. In addition, the joint effect of SNH presence and predator dispersal ability among hedge and field interface results in a stronger pest regulation, which also limits pest growth. Considering properties of both fields and linear elements, such as local structure and geometric features, provides deeper insights for pest regulation; for example, hedge presence at crop field boundaries clearly strengthens CBC. Our results highlight that the integration of species behaviors and traits with landscape structure at multiple scales is necessary to provide useful insights for CBC.


2012 ◽  
Vol 64 (2) ◽  
pp. 777-786 ◽  
Author(s):  
Sonja Mudri-Stojnic ◽  
Andrijana Andric ◽  
Z. Józan ◽  
A. Vujic

The aim of this study was to assess species diversity and population abundance of the two main orders of pollinating insects, Hymenoptera and Diptera. The survey was conducted in 16 grassland fragments within agro-ecosystems in Vojvodina, as well as in surrounding fields with mass-flowering crops. Pollinators were identified and the Shannon-Wiener Diversity Index was used to measure their diversity. Five families, 7 subfamilies, 26 genera and 63 species of insects were recorded. All four big pollinator groups investigated were recorded; hoverflies were the most abundant with 32% of the total number of individuals, followed by wild bees - 29%, honeybees - 23% and bumblebees with 16%.


Sign in / Sign up

Export Citation Format

Share Document