scholarly journals Assessment of phylo-functional coherence along the bacterial phylogeny and taxonomy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcos Parras-Moltó ◽  
Daniel Aguirre de Cárcer

AbstractIn this report we use available curated phylogenies, taxonomy, and genome annotations to assess the phylogenetic and gene content similarity associated with each different taxon and taxonomic rank. Subsequently, we employ the same data to assess the frontiers of functional coherence along the bacterial phylogeny. Our results show that within-group phylogenetic and gene content similarity of taxa in the same rank are not homogenous, and that these values show extensive overlap between ranks. Functional coherence along the 16S rRNA gene-based phylogeny was limited to 44 particular nodes presenting large variations in phylogenetic depth. For instance, the deep subtree affiliated to class Actinobacteria presented functional coherence, while the shallower family Enterobacteriaceae-affiliated subtree did not. On the other hand, functional coherence along the genome-based phylogeny delimited deep subtrees affiliated to phyla Actinobacteriota, Deinococcota, Chloroflexota, Firmicutes, and a subtree containing the rest of the bacterial phyla. The results presented here can be used to guide the exploration of results in many microbial ecology and evolution research scenarios. Moreover, we provide dedicated scripts and files that can be used to continue the exploration of functional coherence along the bacterial phylogeny employing different parameters or input data (https://git.io/Jec5U).

2019 ◽  
Author(s):  
Marcos Parras-Moltó ◽  
Daniel Aguirre de Cárcer

ABSTRACTIn this report we use available curated phylogenies, taxonomy, and genome annotations to assess the phylogenetic and gene content similarity associated with each different taxa and taxonomic rank. Subsequently, we employ the same data to delimit the frontiers of functional coherence along the bacterial phylogeny. Our results show that within-group phylogenetic and gene content similarity of taxa in the same rank are not homogenous, and that these values show extensive overlap between ranks. Functional coherence along the 16S rRNA gene-based phylogeny was limited to 44 particular nodes presenting large variations in phylogenetic depth. For instance, the deep subtree affiliated to class Actinobacteria presented functional coherence, while the shallower family Enterobacteriaceae-affiliated subtree did not. On the other hand, functional coherence along the genome-based phylogeny delimited deep subtrees affiliated to phyla Actinobacteriota, Deinococcota, Chloroflexota, Firmicutes, and a subtree containing the rest of the bacterial phyla.IMPORTANCEWhile bacterial taxonomy and phylogeny resources as well as related bioinformatic tools continue to improve, the question remains as to how they should best be employed in studies using 16S rRNA gene surveys to assess bacteria-ecosystem relationships, a widespread approach. The results contained herein lead to the recommendation that all ranks from genus to class/phylum be employed if using taxonomic binning in the analysis of 16S rRNA gene surveys. With regards to the use of phylogeny or clustering-based approaches, single or arbitrary tree topology or sequence distance thresholds should not be employed. Instead, the results presented here can be used to obtain more meaningful results in many microbial ecology and evolution research scenarios. Moreover, we provide dedicated scripts and files that can be used to continue the exploration of functional coherence along the bacterial phylogeny employing different parameters or input data.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 497
Author(s):  
Phakamas Subta ◽  
Phongsathon Yodsuwan ◽  
Rujipas Yongsawas ◽  
Ammarin In-on ◽  
Natapot Warrit ◽  
...  

This study investigated different bacterial communities in three intestinal parts (foregut, midgut and hindgut) of Xylocopatenuiscapa to understand the roles of gut bacteria. Our phylogenetic analysis revealed that X. tenuiscapa is closely related to Xylocopa latipes. The 16S rRNA gene in the genomic DNA samples from the gut was examined by illumina (Solexa) and a total of 998 operational taxonomic unit (OTUs) clusters were found. Taxonomic classification identified 16 bacterial phyla and unclassified bacteria. The dominant bacteria taxa in the three parts of X. tenuiscapa gut were Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. In the foregut, Lactobacillales and Enterobacteriaceae were predominantly found. The population in the midgut was similar to that in the foregut, with the addition of Gilliamella, which was also abundant. The most dominant bacteria identified in the hindgut were similar to those in the midgut and Lactobacillales, Enterobacteriaceae, Gilliamella, Bifidobacteriaceae and Flavobacteriaceae appeared in abundance. Moreover, our results suggest that a community structure of bacteria in different parts of X. tenuiscapa’s gut may be an important indicator of carpenter bees’ health. This functional study of bacterial communities revealed significant differences among the three intestinal parts and is the first report of the gut bacteria structure in solitary bees.


2005 ◽  
Vol 187 (18) ◽  
pp. 6258-6264 ◽  
Author(s):  
Konstantinos T. Konstantinidis ◽  
James M. Tiedje

ABSTRACT The ranks higher than the species in the prokaryotic taxonomy are primarily designated based on phylogenetic analysis of the 16S rRNA gene sequences, but no definite standards exist for the absolute relatedness (measured by 16S rRNA or other means) between the ranks. Accordingly, it remains unknown how comparable the ranks are between different organisms. To gain insights into this question, we studied the relationship between shared gene content and genetic relatedness for 175 fully sequenced strains, using as a robust measure of relatedness the average amino acid identity (AAI) of the shared genes. Our results reveal that adjacent ranks (e.g., phylum versus class) frequently show extensive overlap in terms of genetic and gene content relatedness of the grouped organisms, and hence, the current system is of limited predictive power in this respect. The overlap between nonadjacent ranks (e.g., phylum versus family) is generally limited and attributable to clear inconsistencies of the taxonomy. In addition to providing means for standardizing taxonomy, our AAI-based approach provides a means to evaluate the robustness of alternative genetic markers for phylogenetic purposes. For instance, the 23S rRNA gene was found to be as good a marker as the 16S rRNA gene, while several of the widely distributed protein-coding genes, such as the RNA polymerase and gyrase subunits, show a strong phylogenetic signal, albeit less strong than the rRNA genes (0.78 > R 2 > 0.69 for the protein-coding genes versus R 2 = 0.84 for the rRNA genes). The AAI approach outlined here could contribute significantly to a genome-based taxonomy for all microbial organisms.


2021 ◽  
Author(s):  
Jana Kačírová ◽  
Aladár Maďari ◽  
Rastislav Mucha ◽  
Lívia K. Fecskeová ◽  
Izabela Mujakic ◽  
...  

Abstract Dental biofilm is a complex microbial community influenced by many exogenous and endogenous factors. Despite long-term studies, its bacterial composition is still not clearly understood. While most of the research on dental biofilms was conducted in humans, much less information is available from companion animals. In this study, we analyzed the composition of canine dental biofilms using both standard cultivation on solid media and amplicon sequencing, and compared the two approaches. The 16S rRNA gene sequences were used to define the bacterial community of canine dental biofilm with both, culture-dependent and culture-independent methods. After DNA extraction from each sample, the V3-V4 region of the 16S rRNA gene was amplified and sequenced via Illumina MiSeq platform. Isolated bacteria were identified using universal primers and Sanger sequencing. Representatives of 18 bacterial genera belonging to 5 phyla were isolated from solid media. Amplicon sequencing largely expanded this information identifying in total 284 OTUs belonging to 10 bacterial phyla. Amplicon sequencing revealed much higher diversity of bacteria in the canine dental biofilms, when compared to standard cultivation approach. In contrast, cultured representatives of several bacterial families were not identified by amplicon sequencing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jana Kačírová ◽  
Aladár Maďari ◽  
Rastislav Mucha ◽  
Lívia K. Fecskeová ◽  
Izabela Mujakic ◽  
...  

AbstractDental biofilm is a complex microbial community influenced by many exogenous and endogenous factors. Despite long-term studies, its bacterial composition is still not clearly understood. While most of the research on dental biofilms was conducted in humans, much less information is available from companion animals. In this study, we analyzed the composition of canine dental biofilms using both standard cultivation on solid media and amplicon sequencing, and compared the two approaches. The 16S rRNA gene sequences were used to define the bacterial community of canine dental biofilm with both, culture-dependent and culture-independent methods. After DNA extraction from each sample, the V3–V4 region of the 16S rRNA gene was amplified and sequenced via Illumina MiSeq platform. Isolated bacteria were identified using universal primers and Sanger sequencing. Representatives of 18 bacterial genera belonging to 5 phyla were isolated from solid media. Amplicon sequencing largely expanded this information identifying in total 284 operational taxonomic units belonging to 10 bacterial phyla. Amplicon sequencing revealed much higher diversity of bacteria in the canine dental biofilms, when compared to standard cultivation approach. In contrast, cultured representatives of several bacterial families were not identified by amplicon sequencing.


2020 ◽  
Vol 8 (6) ◽  
pp. 936 ◽  
Author(s):  
Claudia Leoni ◽  
Mariateresa Volpicella ◽  
Bruno Fosso ◽  
Caterina Manzari ◽  
Elisabetta Piancone ◽  
...  

Microorganisms inhabiting saline environments are an interesting ecological model for the study of the adaptation of organisms to extreme living conditions and constitute a precious resource of enzymes and bioproducts for biotechnological applications. We analyzed the microbial communities in nine ponds with increasing salt concentrations (salinity range 4.9–36.0%) of the Saltern of Margherita di Savoia (Italy), the largest thalassohaline saltern in Europe. A deep-metabarcoding NGS procedure addressing separately the V5-V6 and V3-V4 hypervariable regions of the 16S rRNA gene of Bacteria and Archaea, respectively, and a CARD-FISH (catalyzed reporter deposition fluorescence in situ hybridization) analysis allowed us to profile the dynamics of microbial populations at the different salt concentrations. Both the domains were detected throughout the saltern, even if the low relative abundance of Archaea in the three ponds with the lowest salinities prevented the construction of the relative amplicon libraries. The highest cell counts were recorded at 14.5% salinity for Bacteria and at 24.1% salinity for Archaea. While Bacteria showed the greatest number of genera in the first ponds (salinity range 4.9–14.5%), archaeal genera were more numerous in the last ponds of the saltern (salinity 24.1–36.0%). Among prokaryotes, Salinibacter was the genus with the maximum abundance (~49% at 34.6% salinity). Other genera detected at high abundance were the archaeal Haloquadratum (~43% at 36.0% salinity) and Natronomonas (~18% at 13.1% salinity) and the bacterial “Candidatus Aquiluna” (~19% at 14.5% salinity). Interestingly, “Candidatus Aquiluna” had not been identified before in thalassohaline waters.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 294
Author(s):  
Yan Zhu ◽  
Pascal Drouin ◽  
Dion Lepp ◽  
Xiu-Zhen Li ◽  
Honghui Zhu ◽  
...  

Zearalenone (ZEA) is a mycotoxin widely occurring in many agricultural commodities. In this study, a purified bacterial isolate, Bacillus sp. S62-W, obtained from one of 104 corn silage samples from various silos located in the United States, exhibited activity to transform the mycotoxin ZEA. A novel microbial transformation product, ZEA-14-phosphate, was detected, purified, and identified by HPLC, LC-MS, and NMR analyses. The isolate has been identified as belonging to the genus Bacillus according to phylogenetic analysis of the 16S rRNA gene and whole genome alignments. The isolate showed high efficacy in transforming ZEA to ZEA-14-phosphate (100% transformation within 24 h) and possessed advantages of acid tolerance (work at pH = 4.0), working under a broad range of temperatures (22–42 °C), and a capability of transforming ZEA at high concentrations (up to 200 µg/mL). In addition, 23 Bacillus strains of various species were tested for their ZEA phosphorylation activity. Thirteen of the Bacillus strains showed phosphorylation functionality at an efficacy of between 20.3% and 99.4% after 24 h incubation, suggesting the metabolism pathway is widely conserved in Bacillus spp. This study established a new transformation system for potential application of controlling ZEA although the metabolism and toxicity of ZEA-14-phosphate requires further investigation.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1658
Author(s):  
Jan C. Plaizier ◽  
Anne-Mette Danscher ◽  
Paula A. Azevedo ◽  
Hooman Derakhshani ◽  
Pia H. Andersen ◽  
...  

The effects of a subacute ruminal acidosis (SARA) challenge on the composition of epimural and mucosa-associated bacterial communities throughout the digestive tract were determined in eight non-lactating Holstein cows. Treatments included feeding a control diet containing 19.6% dry matter (DM) starch and a SARA-challenge diet containing 33.3% DM starch for two days after a 4-day grain step-up. Subsequently, epithelial samples from the rumen and mucosa samples from the duodenum, proximal, middle and distal jejunum, ileum, cecum and colon were collected. Extracted DNA from these samples were analyzed using MiSeq Illumina sequencing of the V4 region of the 16S rRNA gene. Distinct clustering patterns for each diet existed for all sites. The SARA challenge decreased microbial diversity at all sites, with the exception of the middle jejunum. The SARA challenge also affected the relative abundances of several major phyla and genera at all sites but the magnitude of these effects differed among sites. In the rumen and colon, the largest effects were an increase in the relative abundance of Firmicutes and a reduction of Bacteroidetes. In the small intestine, the largest effect was an increase in the relative abundance of Actinobacteria. The grain-based SARA challenge conducted in this study did not only affect the composition and cause dysbiosis of epimural microbiota in the rumen, it also affected the mucosa-associated microbiota in the intestines. To assess the extent of this dysbiosis, its effects on the functionality of these microbiota must be determined in future.


2021 ◽  
Vol 11 (4) ◽  
pp. 294
Author(s):  
Irina Grigor’eva ◽  
Tatiana Romanova ◽  
Natalia Naumova ◽  
Tatiana Alikina ◽  
Alexey Kuznetsov ◽  
...  

The last decade saw extensive studies of the human gut microbiome and its relationship to specific diseases, including gallstone disease (GSD). The information about the gut microbiome in GSD-afflicted Russian patients is scarce, despite the increasing GSD incidence worldwide. Although the gut microbiota was described in some GSD cohorts, little is known regarding the gut microbiome before and after cholecystectomy (CCE). By using Illumina MiSeq sequencing of 16S rRNA gene amplicons, we inventoried the fecal bacteriobiome composition and structure in GSD-afflicted females, seeking to reveal associations with age, BMI and some blood biochemistry. Overall, 11 bacterial phyla were identified, containing 916 operational taxonomic units (OTUs). The fecal bacteriobiome was dominated by Firmicutes (66% relative abundance), followed by Bacteroidetes (19%), Actinobacteria (8%) and Proteobacteria (4%) phyla. Most (97%) of the OTUs were minor or rare species with ≤1% relative abundance. Prevotella and Enterocossus were linked to blood bilirubin. Some taxa had differential pre- and post-CCE abundance, despite the very short time (1–3 days) elapsed after CCE. The detailed description of the bacteriobiome in pre-CCE female patients suggests bacterial foci for further research to elucidate the gut microbiota and GSD relationship and has potentially important biological and medical implications regarding gut bacteria involvement in the increased GSD incidence rate in females.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sesilje Weiss ◽  
David Taggart ◽  
Ian Smith ◽  
Kristofer M. Helgen ◽  
Raphael Eisenhofer

Abstract Background Marsupials are born much earlier than placental mammals, with most crawling from the birth canal to the protective marsupium (pouch) to further their development. However, little is known about the microbiology of the pouch and how it changes throughout a marsupial’s reproductive cycle. Here, using stringent controls, we characterized the microbial composition of multiple body sites from 26 wild Southern Hairy-nosed Wombats (SHNWs), including pouch samples from animals at different reproductive stages. Results Using qPCR of the 16S rRNA gene we detected a microbial community in the SHNW pouch. We observed significant differences in microbial composition and diversity between the body sites tested, as well as between pouch samples from different reproductive stages. The pouches of reproductively active females had drastically lower microbial diversity (mean ASV richness 19 ± 8) compared to reproductively inactive females (mean ASV richness 941 ± 393) and were dominated by gram positive bacteria from the Actinobacteriota phylum (81.7–90.6%), with the dominant families classified as Brevibacteriaceae, Corynebacteriaceae, Microbacteriaceae, and Dietziaceae. Three of the five most abundant sequences identified in reproductively active pouches had closest matches to microbes previously isolated from tammar wallaby pouches. Conclusions This study represents the first contamination-controlled investigation into the marsupial pouch microbiota, and sets a rigorous framework for future pouch microbiota studies. Our results indicate that SHNW pouches contain communities of microorganisms that are substantially altered by the host reproductive cycle. We recommend further investigation into the roles that pouch microorganisms may play in marsupial reproductive health and joey survival.


Sign in / Sign up

Export Citation Format

Share Document