scholarly journals First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duong Cao Phan ◽  
Ta Hoang Trung ◽  
Van Thinh Truong ◽  
Taiga Sasagawa ◽  
Thuy Phuong Thi Vu ◽  
...  

AbstractExtensive studies have highlighted a need for frequently consistent land cover information for interdisciplinary studies. This paper proposes a comprehensive framework for the automatic production of the first Vietnam-wide annual land use/land cover (LULC) data sets (VLUCDs) from 1990 to 2020, using available remotely sensed and inventory data. Classification accuracies ranged from 85.7 ± 1.3 to 92.0 ± 1.2% with the primary dominant LULC and 77.6 ± 1.2% to 84.7 ± 1.1% with the secondary dominant LULC. This confirmed the potential of the proposed framework for systematically long-term monitoring LULC in Vietnam. Results reveal that despite slight recoveries in 2000 and 2010, the net loss of forests (19,940 km2) mainly transformed to croplands over 30 years. Meanwhile, productive croplands were converted to urban areas, which increased approximately ten times. A threefold increase in aquaculture was a major driver of the wetland loss (1914 km2). The spatial–temporal changes varied, but the most dynamic regions were the western north, the southern centre, and the south. These findings can provide evidence-based information on formulating and implementing coherent land management policies. The explicitly spatio-temporal VLUCDs can be benchmarks for global LULC validation, and utilized for a variety of applications in the research of environmental changes towards the Sustainable Development Goals.

Author(s):  
N. Sharma ◽  
A. Kaur ◽  
P. Bose

<p><strong>Abstract.</strong> Constantly increasing population and up-scaling economic growth has certainly contributed to fast-paced urban expansion, but simultaneously, as a result, has developed immense pressure on our natural resources. Among other unfavorable consequences, this has led to significant changes in the land use and land cover patterns in megacities all across the globe. As the impact of uncontrolled and unplanned development continues to alter life patterns, it has become imperative to study severe problems resulting from rapid development and leading to environmental pollution, disruptions in ecological structures, ever increasing pressure on natural resources and recurring urban disasters This paper presents an approach to address these challenges using geospatial data to study the land use and land cover change and the patterns and processes of urban growth. Spatio-temporal changes in land-use/land-cover were assessed over the years using multi-date high resolution satellite data. The land use classification was conducted using visual image interpretation technique wherein, study area was categorized into five different classes based on NRSC classification system namely agricultural, built-up, urban green (forest), and fallow land and water bodies. Post-classification change detection technique was used for the assessment of land-cover change and transition matrices of urban expansion were developed to quantify the changes. The results show that the city has been expanding majorly in its borders, where land masses have been converted from agriculture based rural areas to urban structures. An increase in the built-up category was observed with the transformation of agricultural and marginal land with an approximate change of 8.62% in the peri-urban areas. Urban areas are becoming more densely populated and open barren lands are converted into urban areas due to over population and migration from the rural areas of Delhi and thus increasing threat towards urban disaster. Conservation and sustainable management of various natural resources is recommended in order to minimize the impact of potential urban disasters.</p>


2021 ◽  
Author(s):  
Wolfgang A. Obermeier ◽  
Julia E. M. S. Nabel ◽  
Tammas Loughran ◽  
Kerstin Hartung ◽  
Ana Bastos ◽  
...  

Abstract. Quantifying the net carbon flux from land use and land cover changes (fLULCC) is critical for understanding the global carbon cycle, and hence, to support climate change mitigation. However, large-scale fLULCC is not directly measurable, but has to be inferred from models instead, such as semi-empirical bookkeeping models, and process-based dynamic global vegetation models (DGVMs). By definition, fLULCC estimates are not directly comparable between these two different model types. As an example, DGVM-based fLULCC in the annual global carbon budgets is estimated under transient environmental forcing and includes the so-called Loss of Additional Sink Capacity (LASC). The LASC accounts for the impact of environmental changes on land carbon storage potential of managed land compared to potential vegetation which is not represented in bookkeeping models. In addition, fLULCC from transient DGVM simulations differs depending on the arbitrary chosen simulation time period and the historical timing of land use and land cover changes (including different accumulation periods for legacy effects). An approximation of fLULCC by DGVMs that is independent of the timing of land use and land cover changes and their legacy effects requires simulations assuming constant pre-industrial or present-day environmental forcings. Here, we analyze three DGVM-derived fLULCC estimations for twelve models within 18 regions and quantify their differences as well as climate- and CO2-induced components. The three estimations stem from the commonly performed simulation with transiently changing environmental conditions and two simulations that keep environmental conditions fixed, at pre-industrial and present-day conditions. Averaged across the models, we find a global fLULCC (under transient conditions) of 2.0 ± 0.6 PgC yr-1 for 2009–2018, of which ∼40 % are attributable to the LASC (0.8 ± 0.3 PgC yr-1). From 1850 onward, fLULCC accumulated to 189 ± 56 PgC with 40 ± 15 PgC from the LASC. Regional hotspots of high cumulative and annual LASC values are found in the USA, China, Brazil, Equatorial Africa and Southeast Asia, mainly due to deforestation for cropland. Distinct negative LASC estimates, in Europe (early reforestation) and from 2000 onward in the Ukraine (recultivation of post-Soviet abandoned agricultural land), indicate that fLULCC estimates in these regions are lower in transient DGVM- compared to bookkeeping-approaches. By unraveling spatio-temporal variability in three alternative DGVM-derived fLULCC estimates, our results call for a harmonized attribution of model-derived fLULCC. We propose an approach that bridges bookkeeping and DGVM approaches for fLULCC estimation by adopting a mean DGVM-ensemble LASC for a defined reference period.


Author(s):  
Zeeshan Zafar ◽  
Muhammad Sajid Mehmood ◽  
Muhammad Irfan Ahamad ◽  
Amna Chudhary ◽  
Rana Muhammad Zulqarnain ◽  
...  

Abstract Water is primary element for human life on Earth. Fresh surface water including rivers, lakes, streams, and pounds contribute less than one thousandth of a percent of the water on the Earth, but they serve many critical functions for the environment and for human life. Change in Land use and land cover (LULC) is a foremost concern in global environment change. Rapid changes in LULC lead to the degradation of its ecosystems and have adverse effects on the environment. There is an urgent need to monitor changes in LULC and to evaluate the effects of these changes in order to inform decision makers to support the sustainable development. The study used MODIS images to detect LULC patterns in GB from 2008 to 2017, and to investigate changes in LULC between 2008 and 2017. Six types of LULC has been discussed in study to explain major changes of LULC in study area. The results showed that shrinking in barren lands and expansion in urban areas. Study also showed the abrupt behavior of water bodies in study duration. Snow area also showed an expansion which needs attention as well.


2019 ◽  
Vol 8 (3) ◽  
pp. 34-52
Author(s):  
Srishti Solanki ◽  
Chindu Chandran ◽  
J.K. Garg ◽  
Prodyut Bhattacharya

This study was undertaken to evaluate the spatial as well as the temporal changes in land use/ land cover in Devikulam Taluk, Idukki District, Kerala, and to assess the effects of increasing anthropogenic pressure on the fragile ecosystem of this area. For analysis, land use/ land cover maps of four different years, i.e., 1988, 1999, 2008 and 2017, were generated using LANDSAT TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper Plus) and OLI/TIRS (Operational Land Imager/Thermal InfraRed Sensor) satellite imagery. The results of the study suggested that there has been a drastic increase in the built-up area and a continuous decline in the forest area in Devikulam from 35.31 km2 built-up in 1988 to 73.92 km2 in 2017, and 1374.52 km2 forest in 1988 to 1247.24 km2 in 2017, respectively. Over this period of approximately 40 years, around 47.85 km2 area of the forest got converted to built-up. This could be due to the increasing anthropogenic pressure in terms of migration or booming tourism contributing to the increased demand for infrastructures. Therefore, appropriate land use planning is a fundamental step towards the sustainable development of this biogeographically rich and unique area of Devikulam Taluk.


Author(s):  
T. V. Ramachandra ◽  
Settur Bharath ◽  
Aithal Bharath

Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the Earth’s terrestrial surface according to its use and provides the intricate information for effective planning and management activities. LULC changes are stated as local and location specifc, collectively they act as drivers of global environmental changes. Understanding and predicting the impact of LULC change processes requires long term historical restorations and projecting into the future of land cover changes at regional to global scales. The present study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly terrain and coastal region to account the signifcant role of elevation in land cover change. The seasonality is another aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. Spatial patterns of the various patches are identifed and analysed using landscape metrics to understand the forest fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes recent estimates on changes in cropland, agricultural intensifcation, deforestation, pasture expansion, and urbanization as the causal factors for LULC change.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

Sign in / Sign up

Export Citation Format

Share Document