scholarly journals Trend analysis of the decadal variations of water bodies and land cover/land Use through MODIS imagery: an in-depth study from Gilgit Baltistan, Pakistan

Author(s):  
Zeeshan Zafar ◽  
Muhammad Sajid Mehmood ◽  
Muhammad Irfan Ahamad ◽  
Amna Chudhary ◽  
Rana Muhammad Zulqarnain ◽  
...  

Abstract Water is primary element for human life on Earth. Fresh surface water including rivers, lakes, streams, and pounds contribute less than one thousandth of a percent of the water on the Earth, but they serve many critical functions for the environment and for human life. Change in Land use and land cover (LULC) is a foremost concern in global environment change. Rapid changes in LULC lead to the degradation of its ecosystems and have adverse effects on the environment. There is an urgent need to monitor changes in LULC and to evaluate the effects of these changes in order to inform decision makers to support the sustainable development. The study used MODIS images to detect LULC patterns in GB from 2008 to 2017, and to investigate changes in LULC between 2008 and 2017. Six types of LULC has been discussed in study to explain major changes of LULC in study area. The results showed that shrinking in barren lands and expansion in urban areas. Study also showed the abrupt behavior of water bodies in study duration. Snow area also showed an expansion which needs attention as well.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duong Cao Phan ◽  
Ta Hoang Trung ◽  
Van Thinh Truong ◽  
Taiga Sasagawa ◽  
Thuy Phuong Thi Vu ◽  
...  

AbstractExtensive studies have highlighted a need for frequently consistent land cover information for interdisciplinary studies. This paper proposes a comprehensive framework for the automatic production of the first Vietnam-wide annual land use/land cover (LULC) data sets (VLUCDs) from 1990 to 2020, using available remotely sensed and inventory data. Classification accuracies ranged from 85.7 ± 1.3 to 92.0 ± 1.2% with the primary dominant LULC and 77.6 ± 1.2% to 84.7 ± 1.1% with the secondary dominant LULC. This confirmed the potential of the proposed framework for systematically long-term monitoring LULC in Vietnam. Results reveal that despite slight recoveries in 2000 and 2010, the net loss of forests (19,940 km2) mainly transformed to croplands over 30 years. Meanwhile, productive croplands were converted to urban areas, which increased approximately ten times. A threefold increase in aquaculture was a major driver of the wetland loss (1914 km2). The spatial–temporal changes varied, but the most dynamic regions were the western north, the southern centre, and the south. These findings can provide evidence-based information on formulating and implementing coherent land management policies. The explicitly spatio-temporal VLUCDs can be benchmarks for global LULC validation, and utilized for a variety of applications in the research of environmental changes towards the Sustainable Development Goals.


2016 ◽  
Vol 47 (3) ◽  
Author(s):  
Ali & Muhaimeed

This study was carried out in order to identify and mapping the temporal changes for land covers in Baghdad province using Remote Sensing and GIS. Three images were used of land sate taken in 1976, 2000 and 2014 the study area. Suppervised classification and SAVI Index were used to identify land cover classes dominated in the study area. The results of supper classification indicated the presence of five land cover classes including water bodies, bare land, urban, low dense vegetation, and dense vegetation classes. There were four classes of land cover when was used SAVI index: water, no vegetation (bare land and urban), low dense vegetation, and dense vegetation. The results showed that Remote Sensing is a very active and useful tool that can be used to detect land core types. The results showed a decline in class of water bodies from 2.8% to 1.5% for 1976 to 1990 while in 2014 increased to 2.1%. class Urban areas increased continuously with time and accounted for 17.6% , 23.5% and 28.2 % for years of study, indicating  the existence of the phenomenon of urban encroachment. Bare land areas accounted for 29.3% , 26.8% and 33.5% of stady years, respectively. The class of low dense vegetation decreased from 44.8% to 31.7% and 29.4% for 1976, 1990 and 2014 respectively, while the class-Dense vegetation increased at 1976-1990 from 5.5% to 16.4% and  decreased in 2014 to 6.8%. The SAVI had a role in the detection of agriculture and gave results same to the results of super classification. Results indicated that urban land and salinization process can be consider as the most phenomenon which negatively affected on agriculture area.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1739 ◽  
Author(s):  
Hejia Wang ◽  
Weihua Xiao ◽  
Yong Zhao ◽  
Yicheng Wang ◽  
Baodeng Hou ◽  
...  

Evapotranspiration (ET) has undergone profound changes as a result of global climate change and anthropogenic activities. The construction of the Three Gorges Reservoir (TGR) has led to changes in its land use/land cover (LUCC) and local climate, which in turn has changed ET processes in the TGR region. In this paper, the CLM4.5 land surface model is used to simulate and analyze the spatiotemporal variability of ET between 1993 and 2013. Four experiments were conducted to quantify the contribution rate of climate change and LUCC to changes in ET processes. The results show that the climate showed a warming and drying trend from 1993 to 2013, and the LUCC indicates decreasing cropland with increasing forest, grassland, water bodies and urban areas. These changes increased the mean annual ET by 13.76 mm after impoundment. Spatially, the vegetation transpiration accounts for the largest proportion in ET. The decreasing relative humidity and increasing wind speeds led to an increase in vegetation transpiration and ground evaporation, respectively, in the center of the TGR region, while the LUCC drove changes in ET in water bodies, urban areas and high-altitude regions in the TGR region.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7665 ◽  
Author(s):  
Jiangyue Li ◽  
Hongxing Chen ◽  
Chi Zhang ◽  
Tao Pan

Acute farmland expansion and rapid urbanization in Central Asia have accelerated land use/land cover changes, which have substantial effects on ecosystem services. However, the spatiotemporal variations in ecosystem service values (ESVs) in Central Asia are not well understood. Here, based on land use products with 300-m resolution for the years 1995, 2005 and 2015 and transfer methodology, we predicted land use and land cover (LULC) for 2025 and 2035 using CA-Markov, assessed changes in ESVs in response to LULC dynamics, and explored the elasticity of the response of ESV to LULC changes. We found significant expansions of cropland (+22.10%) and urban areas (+322.40%) and shrinking of water bodies (−38.43%) and bare land (−9.42%) during 1995–2035. The combined value of ecosystem services of water bodies, cropland, and grassland accounted for over 90% of the total ESVs. Our study showed that cropland ecosystem services value increased by 93.45 billion US$ from 1995 to 2035, which was mainly caused by the expansion of cropland area. However, the area of water bodies decreased sharply during 1995–2035, causing a loss of 64.38 billion US$. Biodiversity, food production and water regulation were major ecosystem service functions, accounting for 80.52% of the total ESVs. Our results demonstrated that effective land-use policies should be made to control farmland expansion and protect water bodies, grassland and forestland for more sustainable ecosystem services.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


Author(s):  
Qijiao Xie ◽  
Qi Sun

Aerosols significantly affect environmental conditions, air quality, and public health locally, regionally, and globally. Examining the impact of land use/land cover (LULC) on aerosol optical depth (AOD) helps to understand how human activities influence air quality and develop suitable solutions. The Landsat 8 image and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products in summer in 2018 were used in LULC classification and AOD retrieval in this study. Spatial statistics and correlation analysis about the relationship between LULC and AOD were performed to examine the impact of LULC on AOD in summer in Wuhan, China. Results indicate that the AOD distribution expressed an obvious “basin effect” in urban development areas: higher AOD values concentrated in water bodies with lower terrain, which were surrounded by the high buildings or mountains with lower AOD values. The AOD values were negatively correlated with the vegetated areas while positively correlated to water bodies and construction lands. The impact of LULC on AOD varied with different contexts in all cases, showing a “context effect”. The regression correlations among the normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), normalized difference water index (NDWI), and AOD in given landscape contexts were much stronger than those throughout the whole study area. These findings provide sound evidence for urban planning, land use management and air quality improvement.


2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

Author(s):  
Ibrar ul Hassan Akhtar ◽  
Athar Hussain ◽  
Kashif Javed ◽  
Hammad Ghazanfar

Developing countries like Pakistan is among those where lack of adoption to science and technology advancement is a major constraint for Satellite Remote Sensing use in crops and land use land cover digital information generation. Exponential rise in country population, increased food demand, limiting natural resources coupled with migration of rural community to urban areas had further led to skewed official statistics. This study is an attempt to demonstrate the possible use of freely available satellite data like Landsat8 under complex cropping system of Okara district of Punjab, Pakistan. An Integrated approach has been developed for the satellite data based crops and land use/cover spatial area estimation. The resultant quality was found above 96% with Kappa statistics of 0.95. Land utilization statistics provided detail information about cropping patterns as well as land use land cover status. Rice was recorded as most dominating crop in term of cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato, fodder and cotton being cultivated on less than 0.010 million ha. Population settlements were observed over an area of around 0.081 million ha of land. 


Author(s):  
B. Varpe Shriniwas D. Payal Sandip

In the present study, an effort has been made to study in detail of Land Use/Land Cover Mapping for Sambar watershed by using Remote Sensing and GIS technique was carried out during the year of 2020-2021 in Parbhani district. In this research the Remote Sensing and Geographical Information system technique was used for identifying the land use/land cover classes with the help of ArcGIS 10.8 software. The Sambar watershed is located in 19º35ʹ78.78˝ N and 76º87ʹ88.44˝ E in the Parbhani district of Marathwada region in Maharashtra. It is covered a total area 97.01 km2. The land use/land cover map and its classes were identified by the Supervised Classification Method in ArcGIS 10.8 software by using the Landsat 8 satellite image. Total six classes are identified namely as Agricultural area, Forest area, Urban area, Barren land, Water bodies and Fallow land. The Agricultural lands are well distributed throughout the watershed area and it covers 4135 ha. (43 per cent). Forest occupies 502 ha area and sharing about 5 per cent of the total land use land cover of the study area. The Urban land occupies 390 ha. area (4 per cent) and there was a rapid expansion of settlement area. Barren land occupies 3392 ha. area (35 per cent). A water bodies occupy 630 ha. area (6 per cent) and the Fallow land occupies 650 ha (7 per cent) but well-developed dendritic drainage pattern and good water availability is in the Sambar watershed.


Sign in / Sign up

Export Citation Format

Share Document