scholarly journals Effects of stereopsis on vection, presence and cybersickness in head-mounted display (HMD) virtual reality

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilson Luu ◽  
Barbara Zangerl ◽  
Michael Kalloniatis ◽  
Juno Kim

AbstractStereopsis provides critical information for the spatial visual perception of object form and motion. We used virtual reality as a tool to understand the role of global stereopsis in the visual perception of self-motion and spatial presence using virtual environments experienced through head-mounted displays (HMDs). Participants viewed radially expanding optic flow simulating different speeds of self-motion in depth, which generated the illusion of self-motion in depth (i.e., linear vection). Displays were viewed with the head either stationary (passive radial flow) or laterally swaying to the beat of a metronome (active conditions). Multisensory conflict was imposed in active conditions by presenting displays that either: (i) compensated for head movement (active compensation condition), or (ii) presented pure radial flow with no compensation during head movement (active no compensation condition). In Experiment 1, impairing stereopsis by anisometropic suppression in healthy participants generated declines in reported vection strength, spatial presence and severity of cybersickness. In Experiment 2, vection and presence ratings were compared between participants with and without clinically-defined global stereopsis. Participants without global stereopsis generated impaired vection and presence similarly to those found in Experiment 1 by subjects with induced stereopsis impairment. We find that reducing global stereopsis can have benefits of reducing cybersickness, but has adverse effects on aspects of self-motion perception in HMD VR.

Author(s):  
Bernhard E. Riecke ◽  
Jörg Schulte-Pelkum ◽  
Marios N. Avraamides ◽  
Markus von der Heyde ◽  
Heinrich H. Bülthoff

2012 ◽  
Vol 25 (0) ◽  
pp. 214
Author(s):  
Martin Dobricki ◽  
Betty J. Mohler ◽  
Heinrich H. Bülthoff

The simultaneous visuo–tactile stimulation of an individual’s body and a virtual body (avatar) is an experimental method used to investigate the mechanisms of self-experience. Studies incorporating this method found that it elicits the experience of bodily ownership over the avatar. Moreover, as part of our own research we found that it also has an effect on the experience of agency, spatial presence, as well as on the perception of self-motion, and thus on self-localization. However, it has so far not been investigated whether these effects represent distinct categories within conscious experience. We stroked the back of 21 male participants for three minutes while they watched an avatar getting synchronously stroked within a virtual city in a head-mounted display setup. Subsequently, we assessed their avatar and their spatial presence experience with 23 questionnaire items. The analysis of the responses to all items by means of nonmetric multidimensional scaling resulted in a two-dimensional map (stress = 0.151) on which three distinct categories of items could be identified: a cluster (Cronbach’s alpha = 0.89) consisting of all presence items, a cluster (Cronbach’s alpha = 0.88) consisting of agency-related items, and a cluster (Cronbach’s alpha = 0.93) consisting of items related to body ownership as well as self-localization. The reason that spatial presence formed a distinct category could be that body ownership, self-localization and agency are not reported in relation to space. Body ownership and self-localization belonged to the same category which we named identification phenomena. Hence, we propose the following three higher-order categories of self-experience: identification, agency, and spatial presence.


2021 ◽  
Vol 2 ◽  
Author(s):  
Juno Kim ◽  
Stephen Palmisano ◽  
Wilson Luu ◽  
Shinichi Iwasaki

Humans rely on multiple senses to perceive their self-motion in the real world. For example, a sideways linear head translation can be sensed either by lamellar optic flow of the visual scene projected on the retina of the eye or by stimulation of vestibular hair cell receptors found in the otolith macula of the inner ear. Mismatches in visual and vestibular information can induce cybersickness during head-mounted display (HMD) based virtual reality (VR). In this pilot study, participants were immersed in a virtual environment using two recent consumer-grade HMDs: the Oculus Go (3DOF angular only head tracking) and the Oculus Quest (6DOF angular and linear head tracking). On each trial they generated horizontal linear head oscillations along the interaural axis at a rate of 0.5 Hz. This head movement should generate greater sensory conflict when viewing the virtual environment on the Oculus Go (compared to the Quest) due to the absence of linear tracking. We found that perceived scene instability always increased with the degree of linear visual-vestibular conflict. However, cybersickness was not experienced by 7/14 participants, but was experienced by the remaining participants in at least one of the stereoscopic viewing conditions (six of whom also reported cybersickness in monoscopic viewing conditions). No statistical difference in spatial presence was found across conditions, suggesting that participants could tolerate considerable scene instability while retaining the feeling of being there in the virtual environment. Levels of perceived scene instability, spatial presence and cybersickness were found to be similar between the Oculus Go and the Oculus Quest with linear tracking disabled. The limited effect of linear coupling on cybersickness, compared with its strong effect on perceived scene instability, suggests that perceived scene instability may not always be associated with cybersickness. However, perceived scene instability does appear to provide explanatory power over the cybersickness observed in stereoscopic viewing conditions.


2021 ◽  
pp. 1-17
Author(s):  
Iqra Arshad ◽  
Paulo De Mello ◽  
Martin Ender ◽  
Jason D. McEwen ◽  
Elisa R. Ferré

Abstract Despite the technological advancements in Virtual Reality (VR), users are constantly combating feelings of nausea and disorientation, the so-called cybersickness. Cybersickness symptoms cause severe discomfort and hinder the immersive VR experience. Here we investigated cybersickness in 360-degree head-mounted display VR. In traditional 360-degree VR experiences, translational movement in the real world is not reflected in the virtual world, and therefore self-motion information is not corroborated by matching visual and vestibular cues, which may trigger symptoms of cybersickness. We evaluated whether a new Artificial Intelligence (AI) software designed to supplement the 360-degree VR experience with artificial six-degrees-of-freedom motion may reduce cybersickness. Explicit (simulator sickness questionnaire and Fast Motion Sickness (FMS) rating) and implicit (heart rate) measurements were used to evaluate cybersickness symptoms during and after 360-degree VR exposure. Simulator sickness scores showed a significant reduction in feelings of nausea during the AI-supplemented six-degrees-of-freedom motion VR compared to traditional 360-degree VR. However, six-degrees-of-freedom motion VR did not reduce oculomotor or disorientation measures of sickness. No changes were observed in FMS and heart rate measures. Improving the congruency between visual and vestibular cues in 360-degree VR, as provided by the AI-supplemented six-degrees-of-freedom motion system considered, is essential for a more engaging, immersive and safe VR experience, which is critical for educational, cultural and entertainment applications.


2020 ◽  
Vol 33 (6) ◽  
pp. 625-644 ◽  
Author(s):  
Maria Gallagher ◽  
Reno Choi ◽  
Elisa Raffaella Ferrè

Abstract During exposure to Virtual Reality (VR) a sensory conflict may be present, whereby the visual system signals that the user is moving in a certain direction with a certain acceleration, while the vestibular system signals that the user is stationary. In order to reduce this conflict, the brain may down-weight vestibular signals, which may in turn affect vestibular contributions to self-motion perception. Here we investigated whether vestibular perceptual sensitivity is affected by VR exposure. Participants’ ability to detect artificial vestibular inputs was measured during optic flow or random motion stimuli on a VR head-mounted display. Sensitivity to vestibular signals was significantly reduced when optic flow stimuli were presented, but importantly this was only the case when both visual and vestibular cues conveyed information on the same plane of self-motion. Our results suggest that the brain dynamically adjusts the weight given to incoming sensory cues for self-motion in VR; however this is dependent on the congruency of visual and vestibular cues.


2021 ◽  
pp. 1-13
Author(s):  
Sara Arlati ◽  
Simona Gabriella Di Santo ◽  
Flaminia Franchini ◽  
Marta Mondellini ◽  
Beatrice Filiputti ◽  
...  

Background: Virtual reality (VR) has recently emerged as a promising means for the administration of cognitive training of seniors at risk of dementia. Immersive VR could result in increased engagement and performances; however, its acceptance in older adults with cognitive deficits still has to be assessed. Objective: To assess acceptance and usability of an immersive VR environment requiring real walking and active participants’ interaction. Methods: 58 seniors with mild cognitive impairment (MCI, n = 24) or subjective cognitive decline (SCD, n = 31) performed a shopping task in a virtual supermarket displayed through a head-mounted display. Subjective and objective outcomes were evaluated. Results: Immersive VR was well-accepted by all but one participant (TAM3 positive subscales >  5.33), irrespective of the extent of cognitive decline. Participants enjoyed the experience (spatial presence 3.51±0.50, engagement 3.85±0.68, naturalness 3.85±0.82) and reported negligible side-effects (SSQ: 3.74; q1-q3:0–16.83). The environment was considered extremely realistic, such as to induce potentially harmful behaviors: one participant fell while trying to lean on a virtual shelf. Older participants needed more time to conclude trials. Participants with MCI committed more errors in grocery items’ selection and experienced less “perceived control” over the environment. Conclusion: Immersive VR was acceptable and enjoyable for older adults in both groups. Cognitive deficits could induce risky behaviors, and cause issues in the interactions with virtual items. Further studies are needed to confirm acceptance of immersive VR in individuals at risk of dementia, and to extend the results to people with more severe symptoms.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1470
Author(s):  
Naoya Isoyama ◽  
Tsutomu Terada ◽  
Masahiko Tsukamoto

In virtual reality (VR) tourism, when watching a video of a tourist location, the feeling of presence improves the experience. Furthermore, it is desirable to be able to give a feeling of having been there before to the users visiting the site afterward. In this study, we aimed to reveal the factors that provide these feelings. We hypothesized that one of the factors is the perception of self-motion. Therefore, we proposed a method wherein the users were induced to turn their heads to the left and right when watching the video of a tourist site via a VR head-mounted display. We conducted two experiments and found that the proposed method conveyed the greatest sense of presence. On the other hand, there was no significant difference in giving the feeling of having been there between the proposed method and watching the video of the site on a PC.


2020 ◽  
Vol 12 (9) ◽  
pp. 3823
Author(s):  
Elin Filter ◽  
Alexander Eckes ◽  
Florian Fiebelkorn ◽  
Alexander Georg Büssing

As some nature experiences, such as viewing wild animals, may be difficult to implement in science education, immersive virtual reality (VR) technologies have become a promising tool in education. However, there is limited knowledge regarding the effectiveness of nature experiences in VR. In this study, 50 German university students (M = 23.76 years, SD = 3.73 years) from diverse disciplines were randomly assigned to an immersive (head-mounted display; Oculus Quest) or a nonimmersive setting (external computer screen; desktop computer) and individually watched two 360° videos from the social media site YouTube about wolves in their natural habitat. Besides measuring participants’ attitudes towards wolves, we investigated their feeling of presence in the virtual environments with the Spatial Presence Experience Scale (SPES) and the retrospective emotions of interest, joy, and fear with the Differential Affect Scale (M-DAS). The immersive head-mounted display induced higher levels of presence and interest compared to the nonimmersive external computer screen. While higher interest in the screen setting was associated with more positive attitudes towards wolves, such a correlation could not be found in the head-mounted display setting. Thus, our study found that immersive technology could induce interest in a nature experience related to the tested socio-scientific issue, even among people who did not already hold positive attitudes toward the issue. Overall, our findings suggest that 360° videos using immersive technology provide nature experiences with positive affective learning outcomes, even though the study focused on nature experiences in VR and was not an educational experience per se. As we were unable to assess the role of novelty of VR experiences, the application of VR technologies and its effects in larger teaching and learning settings needs to be evaluated in further studies.


Sign in / Sign up

Export Citation Format

Share Document