scholarly journals Effects of Linear Visual-Vestibular Conflict on Presence, Perceived Scene Stability and Cybersickness in the Oculus Go and Oculus Quest

2021 ◽  
Vol 2 ◽  
Author(s):  
Juno Kim ◽  
Stephen Palmisano ◽  
Wilson Luu ◽  
Shinichi Iwasaki

Humans rely on multiple senses to perceive their self-motion in the real world. For example, a sideways linear head translation can be sensed either by lamellar optic flow of the visual scene projected on the retina of the eye or by stimulation of vestibular hair cell receptors found in the otolith macula of the inner ear. Mismatches in visual and vestibular information can induce cybersickness during head-mounted display (HMD) based virtual reality (VR). In this pilot study, participants were immersed in a virtual environment using two recent consumer-grade HMDs: the Oculus Go (3DOF angular only head tracking) and the Oculus Quest (6DOF angular and linear head tracking). On each trial they generated horizontal linear head oscillations along the interaural axis at a rate of 0.5 Hz. This head movement should generate greater sensory conflict when viewing the virtual environment on the Oculus Go (compared to the Quest) due to the absence of linear tracking. We found that perceived scene instability always increased with the degree of linear visual-vestibular conflict. However, cybersickness was not experienced by 7/14 participants, but was experienced by the remaining participants in at least one of the stereoscopic viewing conditions (six of whom also reported cybersickness in monoscopic viewing conditions). No statistical difference in spatial presence was found across conditions, suggesting that participants could tolerate considerable scene instability while retaining the feeling of being there in the virtual environment. Levels of perceived scene instability, spatial presence and cybersickness were found to be similar between the Oculus Go and the Oculus Quest with linear tracking disabled. The limited effect of linear coupling on cybersickness, compared with its strong effect on perceived scene instability, suggests that perceived scene instability may not always be associated with cybersickness. However, perceived scene instability does appear to provide explanatory power over the cybersickness observed in stereoscopic viewing conditions.

1996 ◽  
Vol 5 (3) ◽  
pp. 274-289 ◽  
Author(s):  
Claudia Hendrix ◽  
Woodrow Barfield

This paper reports the results of three studies, each of which investigated the sense of presence within virtual environments as a function of visual display parameters. These factors included the presence or absence of head tracking, the presence or absence of stereoscopic cues, and the geometric field of view used to create the visual image projected on the visual display. In each study, subjects navigated a virtual environment and completed a questionnaire designed to ascertain the level of presence experienced by the participant within the virtual world. Specifically, two aspects of presence were evaluated: (1) the sense of “being there” and (2) the fidelity of the interaction between the virtual environment participant and the virtual world. Not surprisingly, the results of the first and second study indicated that the reported level of presence was significantly higher when head tracking and stereoscopic cues were provided. The results from the third study showed that the geometric field of view used to design the visual display highly influenced the reported level of presence, with more presence associated with a 50 and 90° geometric field of view when compared to a narrower 10° geometric field of view. The results also indicated a significant positive correlation between the reported level of presence and the fidelity of the interaction between the virtual environment participant and the virtual world. Finally, it was shown that the survey questions evaluating several aspects of presence produced reliable responses across questions and studies, indicating that the questionnaire is a useful tool when evaluating presence in virtual environments.


2012 ◽  
Vol 25 (0) ◽  
pp. 214
Author(s):  
Martin Dobricki ◽  
Betty J. Mohler ◽  
Heinrich H. Bülthoff

The simultaneous visuo–tactile stimulation of an individual’s body and a virtual body (avatar) is an experimental method used to investigate the mechanisms of self-experience. Studies incorporating this method found that it elicits the experience of bodily ownership over the avatar. Moreover, as part of our own research we found that it also has an effect on the experience of agency, spatial presence, as well as on the perception of self-motion, and thus on self-localization. However, it has so far not been investigated whether these effects represent distinct categories within conscious experience. We stroked the back of 21 male participants for three minutes while they watched an avatar getting synchronously stroked within a virtual city in a head-mounted display setup. Subsequently, we assessed their avatar and their spatial presence experience with 23 questionnaire items. The analysis of the responses to all items by means of nonmetric multidimensional scaling resulted in a two-dimensional map (stress = 0.151) on which three distinct categories of items could be identified: a cluster (Cronbach’s alpha = 0.89) consisting of all presence items, a cluster (Cronbach’s alpha = 0.88) consisting of agency-related items, and a cluster (Cronbach’s alpha = 0.93) consisting of items related to body ownership as well as self-localization. The reason that spatial presence formed a distinct category could be that body ownership, self-localization and agency are not reported in relation to space. Body ownership and self-localization belonged to the same category which we named identification phenomena. Hence, we propose the following three higher-order categories of self-experience: identification, agency, and spatial presence.


2003 ◽  
Vol 12 (3) ◽  
pp. 296-310 ◽  
Author(s):  
Katerina Mania ◽  
Tom Troscianko ◽  
Rycharde Hawkes ◽  
Alan Chalmers

This paper describes a methodology based on human judgments of memory awareness states for assessing the simulation fidelity of a virtual environment (VE) in relation to its real scene counterpart. To demonstrate the distinction between task performance-based approaches and additional human evaluation of cognitive awareness states, a photorealistic VE was created. Resulting scenes displayed on a head-mounted display (HMD) with or without head tracking and desktop monitor were then compared to the real-world task situation they represented, investigating spatial memory after exposure. Participants described how they completed their spatial recollections by selecting one of four choices of awareness states after retrieval in an initial test and a retention test a week after exposure to the environment. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and also included guesses, even if informed. Experimental results revealed variations in the distribution of participants' awareness states across conditions while, in certain cases, task performance failed to reveal any. Experimental conditions that incorporated head tracking were not associated with visually induced recollections. Generally, simulation of task performance does not necessarily lead to simulation of the awareness states involved when completing a memory task. The general premise of this research focuses on how tasks are achieved, rather than only on what is achieved. The extent to which judgments of human memory recall, memory awareness states, and presence in the physical and VE are similar provides a fidelity metric of the simulation in question.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1470
Author(s):  
Naoya Isoyama ◽  
Tsutomu Terada ◽  
Masahiko Tsukamoto

In virtual reality (VR) tourism, when watching a video of a tourist location, the feeling of presence improves the experience. Furthermore, it is desirable to be able to give a feeling of having been there before to the users visiting the site afterward. In this study, we aimed to reveal the factors that provide these feelings. We hypothesized that one of the factors is the perception of self-motion. Therefore, we proposed a method wherein the users were induced to turn their heads to the left and right when watching the video of a tourist site via a VR head-mounted display. We conducted two experiments and found that the proposed method conveyed the greatest sense of presence. On the other hand, there was no significant difference in giving the feeling of having been there between the proposed method and watching the video of the site on a PC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilson Luu ◽  
Barbara Zangerl ◽  
Michael Kalloniatis ◽  
Juno Kim

AbstractStereopsis provides critical information for the spatial visual perception of object form and motion. We used virtual reality as a tool to understand the role of global stereopsis in the visual perception of self-motion and spatial presence using virtual environments experienced through head-mounted displays (HMDs). Participants viewed radially expanding optic flow simulating different speeds of self-motion in depth, which generated the illusion of self-motion in depth (i.e., linear vection). Displays were viewed with the head either stationary (passive radial flow) or laterally swaying to the beat of a metronome (active conditions). Multisensory conflict was imposed in active conditions by presenting displays that either: (i) compensated for head movement (active compensation condition), or (ii) presented pure radial flow with no compensation during head movement (active no compensation condition). In Experiment 1, impairing stereopsis by anisometropic suppression in healthy participants generated declines in reported vection strength, spatial presence and severity of cybersickness. In Experiment 2, vection and presence ratings were compared between participants with and without clinically-defined global stereopsis. Participants without global stereopsis generated impaired vection and presence similarly to those found in Experiment 1 by subjects with induced stereopsis impairment. We find that reducing global stereopsis can have benefits of reducing cybersickness, but has adverse effects on aspects of self-motion perception in HMD VR.


2003 ◽  
Vol 15 (2) ◽  
pp. 69-71 ◽  
Author(s):  
Thomas W. Schubert

Abstract. The sense of presence is the feeling of being there in a virtual environment. A three-component self report scale to measure sense of presence is described, the components being sense of spatial presence, involvement, and realness. This three-component structure was developed in a survey study with players of 3D games (N = 246) and replicated in a second survey study (N = 296); studies using the scale for measuring the effects of interaction on presence provide evidence for validity. The findings are explained by the Potential Action Coding Theory of presence, which assumes that presence develops from mental model building and suppression of the real environment.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 397
Author(s):  
Qimeng Zhang ◽  
Ji-Su Ban ◽  
Mingyu Kim ◽  
Hae Won Byun ◽  
Chang-Hun Kim

We propose a low-asymmetry interface to improve the presence of non-head-mounted-display (non-HMD) users in shared virtual reality (VR) experiences with HMD users. The low-asymmetry interface ensures that the HMD and non-HMD users’ perception of the VR environment is almost similar. That is, the point-of-view asymmetry and behavior asymmetry between HMD and non-HMD users are reduced. Our system comprises a portable mobile device as a visual display to provide a changing PoV for the non-HMD user and a walking simulator as an in-place walking detection sensor to enable the same level of realistic and unrestricted physical-walking-based locomotion for all users. Because this allows non-HMD users to experience the same level of visualization and free movement as HMD users, both of them can engage as the main actors in movement scenarios. Our user study revealed that the low-asymmetry interface enables non-HMD users to feel a presence similar to that of the HMD users when performing equivalent locomotion tasks in a virtual environment. Furthermore, our system can enable one HMD user and multiple non-HMD users to participate together in a virtual world; moreover, our experiments show that the non-HMD user satisfaction increases with the number of non-HMD participants owing to increased presence and enjoyment.


Author(s):  
Bernhard E. Riecke ◽  
Jörg Schulte-Pelkum ◽  
Marios N. Avraamides ◽  
Markus von der Heyde ◽  
Heinrich H. Bülthoff

Author(s):  
Sean A. McGlynn ◽  
Ranjani M. Sundaresan ◽  
Wendy A. Rogers

Virtual reality (VR) has potential applications for promoting physical, cognitive, and socio-emotional well-being for users of all ages. The ability for individuals to develop a sense of being physically located in the virtual environment, referred to as spatial presence, is often an essential component of successful VR applications. Thus, it is necessary to understand the psychological aspects of the spatial presence process and identify methods of measuring presence formation and maintenance. This in-progress study addresses gaps in the spatial presence literature through an empirical evaluation of a conceptual model of spatial presence, which emphasizes users’ characteristics and abilities. Age will serve as a proxy for changes in a variety of presence-relevant cognitive and perceptual abilities. The results will have implications for the design of VR systems and applications and for selecting individuals best-suited for these applications.


2005 ◽  
Vol 15 (4) ◽  
pp. 185-195 ◽  
Author(s):  
W.G. Wright ◽  
P. DiZio ◽  
J.R. Lackner

We evaluated visual and vestibular contributions to vertical self motion perception by exposing subjects to various combinations of 0.2 Hz vertical linear oscillation and visual scene motion. The visual stimuli presented via a head-mounted display consisted of video recordings of the test chamber from the perspective of the subject seated in the oscillator. In the dark, subjects accurately reported the amplitude of vertical linear oscillation with only a slight tendency to underestimate it. In the absence of inertial motion, even low amplitude oscillatory visual motion induced the perception of vertical self-oscillation. When visual and vestibular stimulation were combined, self-motion perception persisted in the presence of large visual-vestibular discordances. A dynamic visual input with magnitude discrepancies tended to dominate the resulting apparent self-motion, but vestibular effects were also evident. With visual and vestibular stimulation either spatially or temporally out-of-phase with one another, the input that dominated depended on their amplitudes. High amplitude visual scene motion was almost completely dominant for the levels tested. These findings are inconsistent with self-motion perception being determined by simple weighted summation of visual and vestibular inputs and constitute evidence against sensory conflict models. They indicate that when the presented visual scene is an accurate representation of the physical test environment, it dominates over vestibular inputs in determining apparent spatial position relative to external space.


Sign in / Sign up

Export Citation Format

Share Document