scholarly journals Virtual Reality Nature Experiences Involving Wolves on YouTube: Presence, Emotions, and Attitudes in Immersive and Nonimmersive Settings

2020 ◽  
Vol 12 (9) ◽  
pp. 3823
Author(s):  
Elin Filter ◽  
Alexander Eckes ◽  
Florian Fiebelkorn ◽  
Alexander Georg Büssing

As some nature experiences, such as viewing wild animals, may be difficult to implement in science education, immersive virtual reality (VR) technologies have become a promising tool in education. However, there is limited knowledge regarding the effectiveness of nature experiences in VR. In this study, 50 German university students (M = 23.76 years, SD = 3.73 years) from diverse disciplines were randomly assigned to an immersive (head-mounted display; Oculus Quest) or a nonimmersive setting (external computer screen; desktop computer) and individually watched two 360° videos from the social media site YouTube about wolves in their natural habitat. Besides measuring participants’ attitudes towards wolves, we investigated their feeling of presence in the virtual environments with the Spatial Presence Experience Scale (SPES) and the retrospective emotions of interest, joy, and fear with the Differential Affect Scale (M-DAS). The immersive head-mounted display induced higher levels of presence and interest compared to the nonimmersive external computer screen. While higher interest in the screen setting was associated with more positive attitudes towards wolves, such a correlation could not be found in the head-mounted display setting. Thus, our study found that immersive technology could induce interest in a nature experience related to the tested socio-scientific issue, even among people who did not already hold positive attitudes toward the issue. Overall, our findings suggest that 360° videos using immersive technology provide nature experiences with positive affective learning outcomes, even though the study focused on nature experiences in VR and was not an educational experience per se. As we were unable to assess the role of novelty of VR experiences, the application of VR technologies and its effects in larger teaching and learning settings needs to be evaluated in further studies.

Author(s):  
Murat Aksoy ◽  
Chiedu E. Ufodiama ◽  
Anthony D. Bateson ◽  
Stewart Martin ◽  
Aziz U. R. Asghar

AbstractVirtual reality head mounted display (VR HMD) systems are increasingly utilised in combination with electroencephalography (EEG) in the experimental study of cognitive tasks. The aim of our investigation was to determine the similarities/differences between VR HMD and the computer screen (CS) in response to an n-back working memory task by comparing visual electrophysiological event-related potential (ERP) waveforms (N1/P1/P3 components). The same protocol was undertaken for VR HMD and CS with participants wearing the same EEG headcap. ERP waveforms obtained with the VR HMD environment followed a similar time course to those acquired in CS. The P3 mean and peak amplitudes obtained in VR HMD were not significantly different to those obtained in CS. In contrast, the N1 component was significantly higher in mean and peak amplitudes for the VR HMD environment compared to CS at the frontal electrodes. Significantly higher P1 mean and peak amplitudes were found at the occipital region compared to the temporal for VR HMD. Our results show that successful acquisition of ERP components to a working memory task is achievable by combining VR HMD with EEG. In addition, the higher amplitude N1/P1 components seen in VR HMD indicates the potential utility of this VR modality in the investigation of early ERPs. In conclusion, the combination of VR HMD with EEG/ERP would be a useful approach to advance the study of cognitive function in experimental brain research.


2020 ◽  
Vol 1 (1) ◽  
pp. 70-80
Author(s):  
Ekerin Oluseye Michael ◽  
Heidi Tan Yeen-Ju ◽  
Neo Tse Kian

Over the years educators have adopted a variety of technologies in a bid to improve student engagement, interest and understanding of abstract topics taught in the classroom. There has been an increasing interest in immersive technology such as Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). The ability of VR to bring ideas to life in three dimensional spaces in a way that is easy for students to understand the subject matter makes it one of the important tools available today for education. A key feature of VR is the ability to provide multi-sensory visuals and virtual interaction to students wearing a Head Mounted Display thus providing students better learning experience and connection to the subject matter. Virtual Reality has been used for training purposes in the health sector, military, workplace training, gamification and exploration of sites and countless others. With the potential benefits of virtual technology in visualizing abstract concepts in a realistic virtual world, this paper presents a plan to study the use of situated cognition theory as a learning framework to develop an immersive VR application that would be used to train and prepare students studying Telecommunications Engineering for the workplace. This paper presents a review of literature in the area of Virtual Reality in education, offers insight into the motivation behind this research and the planned methodology in carrying out the research.


2020 ◽  
Vol 33 (4-5) ◽  
pp. 479-503 ◽  
Author(s):  
Lukas Hejtmanek ◽  
Michael Starrett ◽  
Emilio Ferrer ◽  
Arne D. Ekstrom

Abstract Past studies suggest that learning a spatial environment by navigating on a desktop computer can lead to significant acquisition of spatial knowledge, although typically less than navigating in the real world. Exactly how this might differ when learning in immersive virtual interfaces that offer a rich set of multisensory cues remains to be fully explored. In this study, participants learned a campus building environment by navigating (1) the real-world version, (2) an immersive version involving an omnidirectional treadmill and head-mounted display, or (3) a version navigated on a desktop computer with a mouse and a keyboard. Participants first navigated the building in one of the three different interfaces and, afterward, navigated the real-world building to assess information transfer. To determine how well they learned the spatial layout, we measured path length, visitation errors, and pointing errors. Both virtual conditions resulted in significant learning and transfer to the real world, suggesting their efficacy in mimicking some aspects of real-world navigation. Overall, real-world navigation outperformed both immersive and desktop navigation, effects particularly pronounced early in learning. This was also suggested in a second experiment involving transfer from the real world to immersive virtual reality (VR). Analysis of effect sizes of going from virtual conditions to the real world suggested a slight advantage for immersive VR compared to desktop in terms of transfer, although at the cost of increased likelihood of dropout. Our findings suggest that virtual navigation results in significant learning, regardless of the interface, with immersive VR providing some advantage when transferring to the real world.


Author(s):  
Monica Soliman ◽  
Johanna Peetz ◽  
Mariya Davydenko

Abstract. Those who feel connected to nature tend to be more likely to engage in pro-environmental behavior. How can this connection with nature be created? We examined whether viewing nature-related videos – specifically, the immersiveness of the technological devices used to display these videos – can enhance connection with nature and increase pro-environmental behavior. Participants watched videos of either natural or built environments through a head-mounted display (immersive technology) or a regular computer screen. We predicted that watching a nature video would enhance nature relatedness and pro-environmental behaviors, particularly when presented with immersive technology than with a traditional computer monitor. There was limited support for the hypotheses; watching the nature video significantly enhanced nature relatedness but not pro-environmental behaviors. The type of technology used did not influence the effect of the videos.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1204 ◽  
Author(s):  
Julia M. Juliano ◽  
Ryan P. Spicer ◽  
Athanasios Vourvopoulos ◽  
Stephanie Lefebvre ◽  
Kay Jann ◽  
...  

Electroencephalography (EEG)-based brain–computer interfaces (BCIs) for motor rehabilitation aim to “close the loop” between attempted motor commands and sensory feedback by providing supplemental information when individuals successfully achieve specific brain patterns. Existing EEG-based BCIs use various displays to provide feedback, ranging from displays considered more immersive (e.g., head-mounted display virtual reality (HMD-VR)) to displays considered less immersive (e.g., computer screens). However, it is not clear whether more immersive displays improve neurofeedback performance and whether there are individual performance differences in HMD-VR versus screen-based neurofeedback. In this pilot study, we compared neurofeedback performance in HMD-VR versus a computer screen in 12 healthy individuals and examined whether individual differences on two measures (i.e., presence, embodiment) were related to neurofeedback performance in either environment. We found that, while participants’ performance on the BCI was similar between display conditions, the participants’ reported levels of embodiment were significantly different. Specifically, participants experienced higher levels of embodiment in HMD-VR compared to a computer screen. We further found that reported levels of embodiment positively correlated with neurofeedback performance only in HMD-VR. Overall, these preliminary results suggest that embodiment may relate to better performance on EEG-based BCIs and that HMD-VR may increase embodiment compared to computer screens.


2021 ◽  
pp. 1-13
Author(s):  
Sara Arlati ◽  
Simona Gabriella Di Santo ◽  
Flaminia Franchini ◽  
Marta Mondellini ◽  
Beatrice Filiputti ◽  
...  

Background: Virtual reality (VR) has recently emerged as a promising means for the administration of cognitive training of seniors at risk of dementia. Immersive VR could result in increased engagement and performances; however, its acceptance in older adults with cognitive deficits still has to be assessed. Objective: To assess acceptance and usability of an immersive VR environment requiring real walking and active participants’ interaction. Methods: 58 seniors with mild cognitive impairment (MCI, n = 24) or subjective cognitive decline (SCD, n = 31) performed a shopping task in a virtual supermarket displayed through a head-mounted display. Subjective and objective outcomes were evaluated. Results: Immersive VR was well-accepted by all but one participant (TAM3 positive subscales >  5.33), irrespective of the extent of cognitive decline. Participants enjoyed the experience (spatial presence 3.51±0.50, engagement 3.85±0.68, naturalness 3.85±0.82) and reported negligible side-effects (SSQ: 3.74; q1-q3:0–16.83). The environment was considered extremely realistic, such as to induce potentially harmful behaviors: one participant fell while trying to lean on a virtual shelf. Older participants needed more time to conclude trials. Participants with MCI committed more errors in grocery items’ selection and experienced less “perceived control” over the environment. Conclusion: Immersive VR was acceptable and enjoyable for older adults in both groups. Cognitive deficits could induce risky behaviors, and cause issues in the interactions with virtual items. Further studies are needed to confirm acceptance of immersive VR in individuals at risk of dementia, and to extend the results to people with more severe symptoms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilson Luu ◽  
Barbara Zangerl ◽  
Michael Kalloniatis ◽  
Juno Kim

AbstractStereopsis provides critical information for the spatial visual perception of object form and motion. We used virtual reality as a tool to understand the role of global stereopsis in the visual perception of self-motion and spatial presence using virtual environments experienced through head-mounted displays (HMDs). Participants viewed radially expanding optic flow simulating different speeds of self-motion in depth, which generated the illusion of self-motion in depth (i.e., linear vection). Displays were viewed with the head either stationary (passive radial flow) or laterally swaying to the beat of a metronome (active conditions). Multisensory conflict was imposed in active conditions by presenting displays that either: (i) compensated for head movement (active compensation condition), or (ii) presented pure radial flow with no compensation during head movement (active no compensation condition). In Experiment 1, impairing stereopsis by anisometropic suppression in healthy participants generated declines in reported vection strength, spatial presence and severity of cybersickness. In Experiment 2, vection and presence ratings were compared between participants with and without clinically-defined global stereopsis. Participants without global stereopsis generated impaired vection and presence similarly to those found in Experiment 1 by subjects with induced stereopsis impairment. We find that reducing global stereopsis can have benefits of reducing cybersickness, but has adverse effects on aspects of self-motion perception in HMD VR.


2021 ◽  
Vol 11 (7) ◽  
pp. 3090
Author(s):  
Sangwook Yoo ◽  
Cheongho Lee ◽  
Seongah Chin

To experience a real soap bubble show, materials and tools are required, as are skilled performers who produce the show. However, in a virtual space where spatial and temporal constraints do not exist, bubble art can be performed without real materials and tools to give a sense of immersion. For this, the realistic expression of soap bubbles is an interesting topic for virtual reality (VR). However, the current performance of VR soap bubbles is not satisfying the high expectations of users. Therefore, in this study, we propose a physically based approach for reproducing the shape of the bubble by calculating the measured parameters required for bubble modeling and the physical motion of bubbles. In addition, we applied the change in the flow of the surface of the soap bubble measured in practice to the VR rendering. To improve users’ VR experience, we propose that they should experience a bubble show in a VR HMD (Head Mounted Display) environment.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4663
Author(s):  
Janaina Cavalcanti ◽  
Victor Valls ◽  
Manuel Contero ◽  
David Fonseca

An effective warning attracts attention, elicits knowledge, and enables compliance behavior. Game mechanics, which are directly linked to human desires, stand out as training, evaluation, and improvement tools. Immersive virtual reality (VR) facilitates training without risk to participants, evaluates the impact of an incorrect action/decision, and creates a smart training environment. The present study analyzes the user experience in a gamified virtual environment of risks using the HTC Vive head-mounted display. The game was developed in the Unreal game engine and consisted of a walk-through maze composed of evident dangers and different signaling variables while user action data were recorded. To demonstrate which aspects provide better interaction, experience, perception and memory, three different warning configurations (dynamic, static and smart) and two different levels of danger (low and high) were presented. To properly assess the impact of the experience, we conducted a survey about personality and knowledge before and after using the game. We proceeded with the qualitative approach by using questions in a bipolar laddering assessment that was compared with the recorded data during the game. The findings indicate that when users are engaged in VR, they tend to test the consequences of their actions rather than maintaining safety. The results also reveal that textual signal variables are not accessed when users are faced with the stress factor of time. Progress is needed in implementing new technologies for warnings and advance notifications to improve the evaluation of human behavior in virtual environments of high-risk surroundings.


Sign in / Sign up

Export Citation Format

Share Document