scholarly journals Monitoring of transfer and internalization of Escherichia coli from inoculated knives to fresh cut cucumbers (Cucumis sativus L.) using bioluminescence imaging

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeting Sun ◽  
Xiaoyan Zhao ◽  
Xiulan Xu ◽  
Yue Ma ◽  
Hongyang Guan ◽  
...  

AbstractSlicing may cause the risk of cross-contamination in cucumber. In this study, knife inoculated with Escherichia coli (E. coli) was used to cut cucumbers, bioluminescence imaging (BLI) was used to visualize the possible distribution and internalization of E. coli during cutting and storage. Results showed that the initial two slices resulted in greater bacterial transfer. The bacterial transfer exhibited a fluctuating decay trend, E. coli was most distributed at the initial cutting site. The contaminated area on the surface of cucumber slices decreased during the storage period, which can be attributed to the death and internalization of E. coli. The maximum internalization distance of E. coli was about 2–3 mm, and did not further spread after 30 min from inoculation. Hence, our results provide useful information for risk management in both home and industrial environment.

2001 ◽  
Vol 64 (4) ◽  
pp. 462-469 ◽  
Author(s):  
A. JAGANNATH ◽  
M. N. RAMESH ◽  
M. C. VARADARAJ

The increasing popularity of traditional milk-based foods has placed emphasis on the need for microbial safety in food-chain establishments, as there are ample possibilities for foodborne pathogens to occur as postprocessing contaminants. The behavioral pattern of an enterotoxigenic strain of Escherichia coli D 21 introduced as a postprocessing contaminant in shrikhand, a traditional sweetened lactic fermented milk product, was studied with variables of initial inoculum (4.3, 5.3, and 6.3 log10 CFU/g), storage temperature (4, 10, and 16°C), and storage period (4, 9, and 14 days). During storage of shrikhand prepared individually with Lactobacillus delbruecki ssp. bulgaricus CFR 2028 and Lactococcus lactis ssp. cremoris B-634, there was a steady decrease in the viable count of E. coli that was proportional to the initial inoculum of E. coli introduced into shrikhand. The data were subjected to multivariate analysis, and equations were derived to predict the behavior of E. coli in shrikhand. The predicted values for the probable survival of E. coli showed good agreement with the experimental values with a majority of these predictions being fail-safe. The values of statistical indices showed that the model fits ranged between extremely good and satisfactory. Response surface plots were generated to describe the behavioral pattern of E. coli. The derived models and response surface plots enabled prediction of the survival of E. coli in shrikhand as a function of initial inoculum levels, storage temperatures, and storage periods of shrikhand. These predictions were valid within the limits of the experimental variables used to develop the model.


2011 ◽  
Vol 74 (3) ◽  
pp. 352-358 ◽  
Author(s):  
YAGUANG LUO ◽  
XIANGWU NOU ◽  
YANG YANG ◽  
ISABEL ALEGRE ◽  
ELLEN TURNER ◽  
...  

This study was conducted to investigate the effect of free chlorine concentrations in wash water on Escherichia coli O157:H7 reduction, survival, and transference during washing of fresh-cut lettuce. The effectiveness of rewashing for inactivation of E. coli O157:H7 on newly cross-contaminated produce previously washed with solutions containing an insufficient amount of chlorine also was assessed. Results indicate that solutions containing a minimum of 0.5 mg/liter free chlorine were effective for inactivating E. coli O157:H7 in suspension to below the detection level. However, the presence of 1 mg/liter free chlorine in the wash solution before washing was insufficient to prevent E. coli O157:H7 survival and transfer during washing because the introduction of cut lettuce to the wash system quickly depleted the free chlorine. Although no E. coli O157:H7 was detected in the wash solution containing 5 mg/liter free chlorine before washing a mix of inoculated and uninoculated lettuce, low numbers of E. coli O157:H7 cells were detected on uninoculated lettuce in four of the seven experimental trials. When the prewash free chlorine concentration was increased to 10 mg/liter or greater, no E. coli O157:H7 transfer was detected. Furthermore, although rewashing newly cross-contaminated lettuce in 50 mg/liter free chlorine for 30 s significantly reduced (P = 0.002) the E. coli O157:H7 populations, it failed to eliminate E. coli O157:H7 on lettuce. This finding suggests that rewashing is not an effective way to correct for process failure, and maintaining a sufficient free chlorine concentration in the wash solution is critical for preventing pathogen cross-contamination.


Food Control ◽  
2014 ◽  
Vol 37 ◽  
pp. 218-227 ◽  
Author(s):  
K. Holvoet ◽  
A. De Keuckelaere ◽  
I. Sampers ◽  
S. Van Haute ◽  
A. Stals ◽  
...  

2008 ◽  
Vol 71 (12) ◽  
pp. 2514-2518 ◽  
Author(s):  
ANA ALLENDE ◽  
MARIA V. SELMA ◽  
FRANCISCO LÓPEZ-GÁLVEZ ◽  
RAQUEL VILLAESCUSA ◽  
MARÍA I. GIL

The influence of wash water quality on the microbial load and sensory quality of fresh-cut escarole was evaluated. Additionally, the degree of Escherichia coli cross-contamination between inoculated and uninoculated products after washing was also studied. Three types of wash water, i.e., potable water, diluted recirculated water, and recirculated water, containing different microbial counts and organic loads, were used. Results showed that microbial load (P > 0.02) and sensory quality (P > 0.625) of the product were not influenced by the water quality after washing and storage. Cross-contamination between inoculated and uninoculated products was observed after washing, as there was significant transmission of E. coli cells from the product to the wash water (P < 0.001). When fresh-cut escarole was contaminated at a high inoculum level (5.1 log CFU/g), wash water quality influenced the level of cross-contamination, as the highest E. coli load (P < 0.001) was shown in uninoculated fresh-cut escarole washed with recirculated water. However, when fresh-cut escarole was contaminated at a low inoculum level (3.2 log CFU/g), the wash water quality did not influence the level of cross-contamination, as E. coli slightly increased, although not at a statistically significant level, after the uninoculated product was washed with recirculated water (P > 0.035). Therefore, the contamination level may impact the effectiveness of water quality to reduce pathogen concentrations. It was clearly observed that cross-contamination of fresh-cut escarole with E. coli occurs, thereby suggesting that small amounts of contamination could impact the overall product and indicating the necessity of using wash water sanitizers to eliminate pathogens.


2014 ◽  
Vol 77 (9) ◽  
pp. 1487-1494 ◽  
Author(s):  
ANNEMARIE L. BUCHHOLZ ◽  
GORDON R. DAVIDSON ◽  
BRADLEY P. MARKS ◽  
EWEN C. D. TODD ◽  
ELLIOT T. RYSER

Cross-contamination of fresh-cut leafy greens with residual Escherichia coli O157:H7–contaminated product during commercial processing was likely a contributing factor in several recent multistate outbreaks. Consequently, radicchio was used as a visual marker to track the spread of the contaminated product to iceberg lettuce in a pilot-scale processing line that included a commercial shredder, step conveyor, flume tank, shaker table, and centrifugal dryer. Uninoculated iceberg lettuce (45 kg) was processed, followed by 9.1 kg of radicchio (dip inoculated to contain a four-strain, green fluorescent protein–labeled nontoxigenic E. coli O157:H7 cocktail at 106 CFU/g) and 907 kg (2,000 lb) of uninoculated iceberg lettuce. After collecting the lettuce and radicchio in about 40 bags (~22.7 kg per bag) along with water and equipment surface samples, all visible shreds of radicchio were retrieved from the bags of shredded product, the equipment, and the floor. E. coli O157:H7 populations were quantified in the lettuce, water, and equipment samples by direct plating with or without prior membrane filtration on Trypticase soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Based on triplicate experiments, the weight of radicchio in the shredded lettuce averaged 614.9 g (93.6%), 6.9 g (1.3%), 5.0 g (0.8%), and 2.8 g (0.5%) for bags 1 to 10, 11 to 20, 21 to 30, and 31 to 40, respectively, with mean E. coli O157:H7 populations of 1.7, 1.2, 1.1, and 1.1 log CFU/g in radicchio-free lettuce. After processing, more radicchio remained on the conveyor (9.8 g; P < 0.05), compared with the shredder (8.3 g), flume tank (3.5 g), and shaker table (0.1 g), with similar E. coli O157:H7 populations (P > 0.05) recovered from all equipment surfaces after processing. These findings clearly demonstrate both the potential for the continuous spread of contaminated lettuce to multiple batches of product during processing and the need for improved equipment designs that minimize the buildup of residual product during processing.


2021 ◽  
Vol 2021 (11) ◽  
pp. pdb.prot101212 ◽  
Author(s):  
Michael R. Green ◽  
Joseph Sambrook

This protocol describes a convenient method for the preparation, use, and storage of competent Escherichia coli. The reported transformation efficiency of this method is ∼5 × 107 transformants/µg of plasmid DNA.


2015 ◽  
Vol 39 (3) ◽  
pp. 276-282
Author(s):  
Hêmina Carla Vilela ◽  
Patrícia de Fátima Pereira Goulart ◽  
Kamila Rezende Dázio de Souza ◽  
Ana Carolina Vilas Boas ◽  
Jane Silva Roda ◽  
...  

The arracacha is an alternative of fresh-cut product; however it can be easily degraded after the processing techniques. The objective of this work was to evaluate the useful life of fresh-cut arracacha submitted to two types of cuts and storage, as well as to evaluate the activity of antioxidant enzymes. The roots were selected, sanitized and submitted to two cut types: cubed and grated. Then they were evaluated at 3 times: 0, 3 and 7 days. The cutting in cubes provided higher quality and lower SOD, CAT and APX activity. However, the grated product presented higher PG activity and lower PPO activity. The microbiological safety and the nutritional value were maintained in both cuts during the whole storage period. The useful life, regarding the physicochemical, nutritional and microbiological aspects, can be established at 7 days under refrigeration for fresh-cut arracacha.


1994 ◽  
Vol 57 (4) ◽  
pp. 337-340 ◽  
Author(s):  
AJIBOLA O. FAPOHUNDA ◽  
KENNETH W. MCMILLIN ◽  
DOUGLAS L. MARSHALL ◽  
W. M. WAITES

Isolates of Escherichia coli and Clostridium perfringens from beef and Aeromonas hydrophila from fish were examined for their ability to survive and grow as cross-contaminates on nonnative tissues at simulated ambient (35°C) and aging/conditioning (15°C) temperatures of handling and retailing found in the tropics. Growth of all isolates over a 10-h period was greater (P < 0.05) on their native tissues at both temperatures. The aging/conditioning temperature effectively limited growth of E. coli and A. hydrophila to less than l-logl0 CFU/g and prevented growth of C. perfringens on beef and fish samples. All three isolates demonstrated characteristic mesophilic growth response on both tissues at 35°C during the 10-h retail period. The study suggests that two muscle food products could be jointly handled to efficiently use available storage/haulage capacity in tropical countries. Potential savings in space, labor and energy would be made if cross-contamination between the two products is minimized by available packaging and sanitizing technologies.


2004 ◽  
Vol 67 (3) ◽  
pp. 591-595 ◽  
Author(s):  
LARRY R. BEUCHAT ◽  
ALAN J. SCOUTEN

The effects of lactic acid, acetic acid, and acidic calcium sulfate (ACS) on viability and subsequent acid tolerance of three strains of Escherichia coli O157:H7 were determined. Differences in tolerance to acidic environments were observed among strains, but the level of tolerance was not affected by the acidulant to which cells had been exposed. Cells of E. coli O157:H7 adapted to grow on tryptic soy agar acidified to pH 4.5 with ACS were compared to cells grown at pH 7.2 in the absence of ACS for their ability to survive after inoculation into ground beef treated with ACS, as well as untreated beef. The number of ACS-adapted cells recovered from ACS-treated beef was significantly (α = 0.05) higher than the number of control cells recovered from ACS-treated beef during the first 3 days of a 10-day storage period at 4°C, suggesting that ACS-adapted cells might be initially more tolerant than unadapted cells to reduced pH in ACS-treated beef. Regardless of treatment of ground beef with ACS or adaptation of E. coli O157:H7 to ACS before inoculating ground beef, the pathogen survived in high numbers.


2009 ◽  
Vol 72 (7) ◽  
pp. 1560-1568 ◽  
Author(s):  
HELGA J. DOERING ◽  
MARK A. HARRISON ◽  
RUTH A. MORROW ◽  
WILLIAM C. HURST ◽  
WILLIAM L. KERR

Lettuce and spinach inoculated with Escherichia coli O157:H7 were processed and handled in ways that might occur in commercial situations, including variations in holding times before and after product cooling, transportation conditions and temperatures, wash treatments, and product storage temperatures and times. Populations of background microflora and E. coli O157:H7 were enumerated after each step in the system. Data analysis was done to predict response variables with a combination of independent categorical variables. Field temperature, time before cooling, and wash treatment significantly affected E. coli O157:H7 populations on both products. The lowest populations of E. coli O157:H7 were encountered when precool time was minimal, lettuce was washed with chlorine, and storage temperature was 4°C. For lettuce, field and transportation temperature were not important once the storage period started, whereas after 2 days E. coli O157:H7 populations on packaged baby spinach were not affected by field temperature. On chopped iceberg lettuce and whole leaf spinach that was packaged and stored at 4°C, E. coli O157:H7 contamination could still be detected after typical handling practices, although populations decreased from initial levels in many cases by at least 1.5 log units. In abusive cases, where populations increased, the product quality quickly deteriorated. Although E. coli O157:H7 levels decreased on products handled and stored under recommended conditions, survivors persisted. This study highlights practices that may or may not affect the populations of E. coli O157:H7 on the final product.


Sign in / Sign up

Export Citation Format

Share Document