scholarly journals Biomechanical forces enhance directed migration and activation of bone marrow-derived dendritic cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Hun Kang ◽  
Hyun Joo Lee ◽  
Ok-Hyeon Kim ◽  
Yong Ju Yun ◽  
Young-Jin Seo ◽  
...  

AbstractMechanical forces are pervasive in the inflammatory site where dendritic cells (DCs) are activated to migrate into draining lymph nodes. For example, fluid shear stress modulates the movement patterns of DCs, including directness and forward migration indices (FMIs), without chemokine effects. However, little is known about the effects of biomechanical forces on the activation of DCs. Accordingly, here we fabricated a microfluidics system to assess how biomechanical forces affect the migration and activity of DCs during inflammation. Based on the structure of edema, we proposed and experimentally analyzed a novel concept for a microchip model that mimicked such vascular architecture. The intensity of shear stress generated in our engineered chip was found as 0.2–0.6 dyne/cm2 by computational simulation; this value corresponded to inflammation in tissues. In this platform, the directness and FMIs of DCs were significantly increased, whereas the migration velocity of DCs was not altered by shear stress, indicating that mechanical stimuli influenced DC migration. Moreover, DCs with shear stress showed increased expression of the DC activation markers MHC class I and CD86 compared with DCs under static conditions. Taken together, these data suggest that the biomechanical forces are important to regulate the migration and activity of DCs.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 258-258
Author(s):  
Hendrik B Feys ◽  
Patricia J Anderson ◽  
J. Evan Sadler

Abstract ADAMTS13 is a plasma metalloprotease that is essential for the normal proteolytic processing of von Willebrand factor (VWF). Dysfunctional ADAMTS13 may lead to thrombotic thrombocytopenic purpura, as uncleaved and unusually large VWF multimers accumulate in the blood and cause intravascular platelet aggregation. Many studies indicate that proteolysis of multimeric VWF involves conformational changes in the VWF A2 domain that expose the Y1605-M1606 scissile bond and also allow substrate binding to multiple exosites on ADAMTS13. For example, VWF is resistant to proteolysis by ADAMTS13 unless the VWF is subjected to fluid shear stress, mild denaturation with guanidine or urea, or adsorption onto a surface. However, the functional interactions between shear stress, various ADAMTS13 binding sites and VWF cleavage are not understood. Therefore, we investigated the effect of fluid shear stress and ADAMTS13 structure on ADAMTS13-VWF binding and VWF cleavage. Upon mixing recombinant VWF (rVWF) and ADAMTS13 in a physiological buffer (50 mM HEPES, 5 mM CaCl2, 1 μM ZnCl2, 150 mM NaCl, pH 7.4), we found that immunoprecipitation with anti-VWF also pulled down substantial amounts of ADAMTS13. Although less striking, a similar result was obtained with purified plasma VWF. Therefore, ADAMTS13 can bind VWF without gaining access to the cleavage site in VWF domain A2. When fluid shear stress was applied for 2 min with a bench-top vortexer, ADAMTS13 binding increased 3-fold and VWF was also cleaved. Lowering the ionic strength markedly increased the rate of VWF cleavage but did not affect ADAMTS13 binding, which suggests that cleavage and binding depend on distinct VWF-ADAMTS13 interactions. Shear-induced binding was reversible slowly upon removal of unbound ADAMTS13 or rapidly by addition of SDS. ADAMTS13-VWF binding was stable for at least 24 h after cessation of shear stress, indicating that the structural change in VWF that promotes binding was not readily reversible. Using a catalytically inactive ADAMTS13 variant to simplify the analysis of binding assays, 30 nM ADAMTS13(E231Q) bound to 30 μg/ml rVWF (120 nM subunits) with a stoichiometry of 0.012 ± 0.004 under static conditions and 0.098 ± 0.023 after shearing (mean ± SD, n = 3, P = 0.019). With 120 nM ADAMTS13(E231Q) the stoichiometry increased to 0.086 ± 0.036 under static conditions and 0.469 ± 0.033 after shearing for 2 min. Recombinant ADAMTS13 truncated after TSP-1 repeat 8 (lacking the C-terminal CUB domains, delCUB), or truncated after the Spacer domain (consisting of domains MDTCS), did not bind rVWF under static conditions, implicating the CUB domains in binding to VWF. In contrast, full-length ADAMTS13, delCUB and MDTCS bound similarly to rVWF after shearing. In a previous study, delCUB and MDTCS did not cleave VWF subjected to fluid shear stress (Zhang et al, Blood2007; 110: 1887–1894). However, under the conditions employed in these experiments, MDTCS and delCUB displayed significant proteolytic activity, cleaving VWF at a rate comparable to that of full length ADAMTS13 when shear stress was applied over a time course of 0–160 sec. We conclude that ADAMTS13 CUB domains contribute to binding a few sites on multimeric VWF under static conditions, whereas ADAMTS13 MDTCS domains are sufficient to bind many sites in an altered conformation of VWF that is induced by fluid shear stress. Binding of ADAMTS13 to unsheared VWF multimers may facilitate the cleavage of VWF within a growing thrombus.


Author(s):  
Joanna Rossi ◽  
Léonie Rouleau ◽  
Jean-Claude Tardif ◽  
Richard L. Leask

Although originally designed as inhibitors of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, are now known to also have non-lipid lowering benefits [1]. Statins have been reported to modulate gene expression in endothelial cells, however, the effect of statins on adhesion molecule expression is contradictory. Some studies report a decrease in adhesion molecule mRNA and/or protein after statin treatment [2], while others have shown that statins potentiate the effect of tumor necrosis factor alpha (TNFα) [3]. To the best of our knowledge, the effects of statins on gene expression in cultured endothelial cells has been done in static conditions only and no study has examined the effect of blood flow. This is particularly important since fluid shear stress is a strong regulator of endothelial cell function and phenotype [4]. The purpose of this study was to clarify the effects of statins on vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells by evaluating their biological response under fluid flow.


2006 ◽  
Vol 291 (4) ◽  
pp. F856-F865 ◽  
Author(s):  
Colin Friedrich ◽  
Nicole Endlich ◽  
Wilhelm Kriz ◽  
Karlhans Endlich

Podocytes are exposed to mechanical forces arising from glomerular capillary pressure and filtration. It has been shown that stretch affects podocyte biology in vitro and plays a significant role in the development of glomerulosclerosis in vivo. However, whether podocytes are sensitive to fluid shear stress is completely unknown. In the present study, we therefore exposed cells of a recently generated conditionally immortalized mouse podocyte cell line to defined fluid shear stress in a flow chamber, mimicking flow of the glomerular ultrafiltrate over the surface of podocytes in Bowman's space. Shear stress above 0.25 dyne/cm2 resulted in dramatic loss of podocytes but not of proximal tubular epithelial cells (LLC-PK1 cells) after 20 h. At 0.015–0.25 dyne/cm2, lamellipodia formation in podocytes was enhanced and the actin nucleation protein cortactin was redistributed to the cell margins. Shear stress further diminished stress fibers and the presence of vinculin in focal adhesions. Linear zonula occludens-1 distribution at cell-cell contacts remained unaffected at low shear stress. At 0.25 dyne/cm2, the monolayer was broken up and remaining cell-cell contacts were reinforced by F-actin and α-actinin. Because the cytoskeletal changes induced by shear stress suggested the involvement of tyrosine kinases (TKs), we tested several TK inhibitors that were all without effect on podocyte number under static conditions. At 0.25 dyne/cm2, however, the TK inhibitors genistein and AG 82 were associated with marked podocyte loss. Our data demonstrate that podocytes are highly sensitive to fluid shear stress. Shear stress induces a reorganization of the actin cytoskeleton and activates specific tyrosine kinases that are required to withstand fluid shear stress.


Author(s):  
W. Scott Van Dyke ◽  
Eric Nauman ◽  
Ozan Akkus

The causes, mechanisms, and biology of bone adaptation have been under intense investigation ever since Julius Wolff proposed that bone architecture is determined by mathematical laws as a result of mechanical loading. How bone responds to mechanical loads by converting the mechanical signals into chemical signals is known as mechanotransduction. The in vivo environment of bone is complex, and most studies of cell-level phenomena have relied on the use of in vitro experiments using mechanical bioreactors. The main types of bioreactors are fluid flow shear stress, tensile and/or compressive strain, and hydrostatic pressure [1–2]. Of these bioreactors, the most intuitive mechanical stimulus for bone would be the tensile and compressive strain bioreactors. However, many researchers now claim that shear stress via interstitial fluid flow in the lacunar-canalicular porosity is the primary mechanosensory stimulus [3]. A handful of studies have attempted to compare the effects of both of these mechanical stimuli on osteoblasts, but these studies are lacking in two respects [4–6]. First, if both fluid flow and strain are performed in the same bioreactor, the magnitude of one loading mode is explicitly determined through constitutive equations, while the other is only estimated. Second, if the magnitudes of the loading modes are able to be explicitly determined they are performed in different bioreactors, providing the cells different extracellular environments. Therefore, a highly controllable dual-loading mode mechanical bioreactor, as described and characterized in this study, is a necessary tool to further understand the mechanotransduction of bone.


2006 ◽  
Vol 290 (2) ◽  
pp. C444-C452 ◽  
Author(s):  
Eric A. Osborn ◽  
Aleksandr Rabodzey ◽  
C. Forbes Dewey ◽  
John H. Hartwig

Fluid shear stress stimulation induces endothelial cells to elongate and align in the direction of applied flow. Using the complementary techniques of photoactivation of fluorescence and fluorescence recovery after photobleaching, we have characterized endothelial actin cytoskeleton dynamics during the alignment process in response to steady laminar fluid flow and have correlated these results to motility. Alignment requires 24 h of exposure to fluid flow, but the cells respond within minutes to flow and diminish their movement by 50%. Although movement slows, the actin filament turnover rate increases threefold and the percentage of total actin in the polymerized state decreases by 34%, accelerating actin filament remodeling in individual cells within a confluent endothelial monolayer subjected to flow to levels used by dispersed nonconfluent cells under static conditions for rapid movement. Temporally, the rapid decrease in filamentous actin shortly after flow stimulation is preceded by an increase in actin filament turnover, revealing that the earliest phase of the actin cytoskeletal response to shear stress is net cytoskeletal depolymerization. However, unlike static cells, in which cell motility correlates positively with the rate of filament turnover and negatively with the amount polymerized actin, the decoupling of enhanced motility from enhanced actin dynamics after shear stress stimulation supports the notion that actin remodeling under these conditions favors cytoskeletal remodeling for shape change over locomotion. Hours later, motility returned to pre-shear stress levels but actin remodeling remained highly dynamic in many cells after alignment, suggesting continual cell shape optimization. We conclude that shear stress initiates a cytoplasmic actin-remodeling response that is used for endothelial cell shape change instead of bulk cell translocation.


2010 ◽  
Vol 299 (6) ◽  
pp. C1461-C1467 ◽  
Author(s):  
Daniel E. Conway ◽  
Sungmun Lee ◽  
Suzanne G. Eskin ◽  
Ankit K. Shah ◽  
Hanjoong Jo ◽  
...  

We examined the effects of fluid shear stress on metallothionein (MT) gene and protein expression and intracellular free zinc in mouse aorta and in human umbilical vein endothelial cells (HUVECs). Immunostaining of the endothelial surface of mouse aorta revealed increased expression of MT protein in the lesser curvature of the aorta relative to the descending thoracic aorta. HUVECs were exposed to high steady shear stress (15 dyn/cm2), low steady shear stress (1 dyn/cm2), or reversing shear stress (mean of 1 dyn/cm2, 1 Hz) for 24 h. Gene expression of three MT-1 isoforms, MT-2A, and zinc transporter-1 was upregulated by low steady shear stress and reversing shear stress. HUVECs exposed to 15 dyn/cm2 had increased levels of free zinc compared with cells under other shear stress regimes and static conditions. The increase in free zinc was partially blocked with an inhibitor of nitric oxide synthesis, suggesting a role for shear stress-induced endothelial nitric oxide synthase activity. Cells subjected to reversing shear stress in zinc-supplemented media (50 μM ZnSO4) had increased intracellular free zinc, reduced surface intercellular adhesion molecule-1 expression, and reduced monocyte adhesion compared with cells exposed to reversing shear stress in normal media. The sensitivity of intracellular free zinc to differences in shear stress suggests that intracellular zinc levels are important in the regulation of the endothelium and in the progression of vascular disease.


Author(s):  
Mehdi Moradkhani ◽  
Bahman Vahidi ◽  
Bahram Ahmadian

AbstractInvestigating the effects of mechanical stimuli on stem cells under in vitro and in vivo conditions is a very important issue to reach better control on cellular responses like growth, proliferation, and differentiation. In this regard, studying the effects of scaffold geometry, steady, and transient fluid flow, as well as influence of different locations of the cells lodged on the scaffold on effective mechanical stimulations of the stem cells are of the main goals of this study. For this purpose, collagen-based scaffolds and implicit surfaces of the pore architecture was used. In this study, computational fluid dynamics and fluid-structure interaction method was used for the computational simulation. The results showed that the scaffold microstructure and the pore architecture had an essential effect on accessibility of the fluid to different portions of the scaffold. This leads to the optimization of shear stress and hydrodynamic pressure in different surfaces of the scaffold for better transportation of oxygen and growth factors as well as for optimized mechanoregulative responses of cell–scaffold interactions. Furthermore, the results indicated that the HP scaffold provides more optimizer surfaces to culture stem cells rather than Gyroid and IWP scaffolds. The results of exerting oscillatory fluid flow into the HP scaffold showed that the whole surface of the HP scaffold expose to the shear stress between 0.1 and 40 mPa and hydrodynamics factors on the scaffold was uniform. The results of this study could be used as an aid for experimentalists to choose optimist fluid flow conditions and suitable situation for cell culture.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manabu Maeshiro ◽  
Satoru Shinriki ◽  
Rin Liu ◽  
Yutaka Nakachi ◽  
Yoshihiro Komohara ◽  
...  

AbstractOnce disseminated tumor cells (DTCs) arrive at a metastatic organ, they remain there, latent, and become seeds of metastasis. However, the clonal composition of DTCs in a latent state remains unclear. Here, we applied high-resolution DNA barcode tracking to a mouse model that recapitulated the metastatic dormancy of head and neck squamous cell carcinoma (HNSCC). We found that clones abundantly circulated peripheral blood dominated DTCs. Through analyses of multiple barcoded clonal lines, we identified specific subclonal population that preferentially generated homotypic circulating tumor cell (CTC) clusters and dominated DTCs. Despite no notable features under static conditions, this population significantly generated stable cell aggregates that were resistant to anoikis under fluid shear stress (FSS) conditions in an E-cadherin-dependent manner. Our data from various cancer cell lines indicated that the ability of aggregate-constituting cells to regulate cortical actin-myosin dynamics governed the aggregates’ stability in FSS. The CTC cluster-originating cells were characterized by the expression of a subset of E-cadherin binding factors enriched with actin cytoskeleton regulators. Furthermore, this expression signature was associated with locoregional and metastatic recurrence in HNSCC patients. These results reveal a biological selection of tumor cells capable of generating FSS-adaptive CTC clusters, which leads to distant colonization.


2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Irmeli Barkefors ◽  
Cyrus K. Aidun ◽  
E. M. Ulrika Egertsdotter

Hemodynamic stress is a critical factor in the onset of atherosclerosis such that reduced rates of shear stress occurring at regions of high curvature are more prone to disease. The level of shear stress has direct influence on the thickness and integrity of the glycocalyx layer. Here we show that heparan sulfate, the main component of the glycocalyx layer, forms an intact layer only on cell surfaces subjected to shear, and not under static conditions. Furthermore, receptor-mediated endocytosis of heparan sulfate and low-density liporoteins is not detectable in cells exposed to shear stress. The internalized heparan sulfate and low-density lipoproteins are colocalized as shown by confocal imaging.


2005 ◽  
Vol 127 (3) ◽  
pp. 374-382 ◽  
Author(s):  
Tomas B. Owatverot ◽  
Sara J. Oswald ◽  
Yong Chen ◽  
Jeremiah J. Wille ◽  
Frank C-P Yin

Endothelial cells in vivo are normally subjected to multiple mechanical stimuli such as stretch and fluid shear stress (FSS) but because each stimulus induces magnitude-dependent morphologic responses, the relative importance of each stimulus in producing the normal in vivo state is not clear. Using cultured human aortic endothelial cells, this study first determined equipotent levels of cyclic stretch, steady FSS, and oscillatory FSS with respect to the time course of cell orientation. We then tested whether these levels of stimuli were equipotent in combination with each other by imposing simultaneous cyclic stretch and steady FSS or cyclic stretch and oscillatory FSS so as to reinforce or counteract the cells’ orientation responses. Equipotent levels of the three stimuli were 2% cyclic stretch at 2%∕s, 80dynes∕cm2 steady FSS and 20±10dynes∕cm2 oscillatory FSS at 20dyne∕cm2-s. When applied in reinforcing fashion, cyclic stretch and oscillatory, but not steady, FSS were additive. Both pairs of stimuli canceled when applied in counteracting fashion. These results indicate that this level of cyclic stretch and oscillatory FSS sum algebraically so that they are indeed equipotent. In addition, oscillatory FSS is a stronger stimulus than steady FSS for inducing cell orientation. Moreover, arterial endothelial cells in vivo are likely receiving a stronger stretch than FSS stimulus.


Sign in / Sign up

Export Citation Format

Share Document