scholarly journals Kras-driven intratumoral heterogeneity triggers infiltration of M2 polarized macrophages via the circHIPK3/PTK2 immunosuppressive circuit

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Theodora Katopodi ◽  
Savvas Petanidis ◽  
Kalliopi Domvri ◽  
Paul Zarogoulidis ◽  
Doxakis Anestakis ◽  
...  

AbstractIntratumoral heterogeneity in lung cancer is essential for evasion of immune surveillance by tumor cells and establishment of immunosuppression. Gathering data reveal that circular RNAs (circRNAs), play a role in the pathogenesis and progression of lung cancer. Particularly Kras-driven circRNA signaling triggers infiltration of myeloid-associated tumor macrophages in lung tumor microenvironment thus establishing immune deregulation, and immunosuppression but the exact pathogenic mechanism is still unknown. In this study, we investigate the role of oncogenic Kras signaling in circRNA-related immunosuppression and its involvement in tumoral chemoresistance. The expression pattern of circRNAs HIPK3 and PTK2 was determined using quantitative polymerase chain reaction (qPCR) in lung cancer patient samples and cell lines. Apoptosis was analyzed by Annexin V/PI staining and FACS detection. M2 macrophage polarization and MDSC subset analysis (Gr1−/CD11b−, Gr1−/CD11b+) were determined by flow cytometry. Tumor growth and metastatic potential were determined in vivo in C57BL/6 mice. Findings reveal intra-epithelial CD163+/CD206+ M2 macrophages to drive Kras immunosuppressive chemoresistance through myeloid differentiation. In particular, monocytic MDSC subsets Gr1−/CD11b−, Gr1−/CD11b+ triggered an M2-dependent immune response, creating an immunosuppressive tumor-promoting network via circHIPK3/PTK2 enrichment. Specifically, upregulation of exosomal cicHIPK3/PTK2 expression prompted Kras-driven intratumoral heterogeneity and guided lymph node metastasis in C57BL/6 mice. Consequent co-inhibition of circPTK2/M2 macrophage signaling suppressed lung tumor growth along with metastatic potential and prolonged survival in vivo. Taken together, these results demonstrate the key role of myeloid-associated macrophages in sustaining lung immunosuppressive neoplasia through circRNA regulation and represent a potential therapeutic target for clinical intervention in metastatic lung cancer.

2018 ◽  
Vol 9 (11) ◽  
pp. 5715-5727 ◽  
Author(s):  
Mrityunjay Tyagi ◽  
Biswanath Maity ◽  
Bhaskar Saha ◽  
Ajay Kumar Bauri ◽  
Mahesh Subramanian ◽  
...  

The spice-derived phenolic, malabaricone B induces mitochondrial cell death and reduces lung tumor growthin vivo.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Wendan Yu ◽  
Yijun Hua ◽  
Huijuan Qiu ◽  
Jiaojiao Hao ◽  
Kun Zou ◽  
...  

Abstract PD-L1 is overexpressed in tumor cells and contributes to cancer immunoevasion. However, the role of the tumor cell-intrinsic PD-L1 in cancers remains unknown. Here we show that PD-L1 regulates lung cancer growth and progression by targeting the WIP and β-catenin signaling. Overexpression of PD-L1 promotes tumor cell growth, migration and invasion in lung cancer cells, whereas PD-L1 knockdown has the opposite effects. We have also identified WIP as a new downstream target of PD-L1 in lung cancer. PD-L1 positively modulates the expression of WIP. Knockdown of WIP also inhibits cell viability and colony formation, whereas PD-L1 overexpression can reverse this inhibition effects. In addition, PD-L1 can upregulate β-catenin by inhibiting its degradation through PI3K/Akt signaling pathway. Moreover, we show that in lung cancer cells β-catenin can bind to the WIP promoter and activate its transcription, which can be promoted by PD-L1 overexpression. The in vivo experiments in a human lung cancer mouse model have also confirmed the PD-L1-mediated promotion of tumor growth and progression through activating the WIP and β-catenin pathways. Furthermore, we demonstrate that PD-L1 expression is positively correlated with WIP in tumor tissues of human adenocarcinoma patients and the high expression of PD-L1 and WIP predicts poor prognosis. Collectively, our results provide new insights into understanding the pro-tumorigenic role of PD-L1 and its regulatory mechanism on WIP in lung cancer, and suggest that the PD-L1/Akt/β-catenin/WIP signaling axis may be a potential therapeutic target for lung cancers.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qiming Shen ◽  
Zhe Xu ◽  
Guanghao Sun ◽  
Haoyou Wang ◽  
Lin Zhang

AbstractLong noncoding RNAs (lncRNAs) are critical players during cancer progression. Nevertheless, the effect of most lncRNAs in lung cancer (LC) remains unclear. We aimed to explore the role of LINC01342 in LC development through the microRNA-508-5p (miR-508-5p)/cysteine-rich secretory protein 3 (CRISP3) axis. LINC01342, miR-508-5p, and CRISP3 expression in clinical samples and cell lines were determined, and their correlations in LC were analyzed. The prognostic role of LINC01342 in LC patients was evaluated. LC cells were screened and, respectively, transfected to alter the expression of LINC01342, miR-508-5p, and CRISP3. Then, proliferation, migration, invasion, and apoptosis of transfected LC cells were determined, and the in vivo tumor growth was observed as well. Binding relationships between LINC01342 and miR-508-5p, and between miR-508-5p and CRISP3 were identified. LINC01342 and CRISP3 were upregulated and miR-508-5p was downregulated in LC tissues and cells. High LINC01342 expression indicated a poor prognosis of LC patients. The LINC01342/CRISP3 silencing or miR-508-5p elevation inhibited proliferation, migration, and invasion of LC cells and promoted LC cell apoptosis, and also suppressed the in vivo tumor growth. LINC01342 bound to miR-508-5p and miR-508-5p targeted CRISP3. LINC01342 plays a prognostic role in LC and LINC01342 silencing upregulates miR-508-5p to inhibit the progression of LC by reducing CRISP3.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2091
Author(s):  
Shweta Arora ◽  
Prithvi Singh ◽  
Shaniya Ahmad ◽  
Tanveer Ahmad ◽  
Ravins Dohare ◽  
...  

Macrophage polarization and infiltration to the tumor microenvironment (TME) is a critical determining factor for tumor progression. Macrophages are polarized into two states—M1 (pro-inflammatory, anti-tumorigenic and stimulated by LPS or IFN-γ) and M2 (anti-inflammatory pro-tumorigenic and stimulated by IL-4) phenotypes. Specifically, M2 macrophages enhance tumor cell growth and survival. Recent evidences suggest the pivotal role of microRNAs in macrophage polarization during the development of Non-small cell lung cancer (NSCLC), thus proposing a new therapeutic option to target lung cancer. In silico analysis determined cogent upregulation of KLF4, downregulation of IL-1β and miR-34a-5p in NSCLC tissues, consequently worsening the overall survival of NSCLC patients. We observed a significant association of KLF4 with macrophage infiltration and polarization in NSCLC. We found that KLF4 is critically implicated in M2 polarization of macrophages, which, in turn, promotes tumorigenesis. KLF4 expression correlated with miR-34a-5p and IL-1β in a feed-forward loop (FFL), both of which are implicated in immune regulation. Mechanistic overexpression of miR-34a-5p in macrophages (IL-4 stimulated) inhibits KLF4, along with downregulation of ARG1, REL-1MB (M2 macrophage specific markers), and upregulation of IL-1β, IL-6, (M1 macrophage specific markers), demonstrating macrophage polarization switch from M2 to M1 phenotype. Moreover, co-culture of these macrophages with NSCLC cells reduces their proliferation, wound healing, clonogenic capacity and enhanced NO-mediated apoptosis. Further, transfection of miR-34a-5p in NSCLC cells, also degrades KLF4, but enhances the expression of KLF4 regulated genes—IL-1β, IL-6 (pro-inflammatory mediators), which is further enhanced upon co-culture with IL-4 stimulated macrophages. Additionally, we observed a significant increase in i-NOS/NO content upon co-culture, suggesting polarization reversion of macrophages from M2 to M1, and eventually leading to anti-tumor effects. Our findings thus show a significant role of KLF4 in tumorigenesis and TAM polarization of NSCLC. However, miR-34a-5p mediated targeting of these molecular networks will provide a better therapeutic intervention for NSCLC.


Author(s):  
Jixian Liu ◽  
Ruixing Luo ◽  
Junbin Wang ◽  
Xinyu Luan ◽  
Da Wu ◽  
...  

BackgroundNon-small cell lung carcinoma (NSCLC) is a type lung cancer with high malignant behaviors. MicroRNAs (miRNAs) are known to be involved in progression of NSCLC. In order to explore potential targets for the treatment of NSCLC, bioinformatics tool was used to analyze differential expressed miRNAs between NSCLC and adjacent normal tissues.MethodsBioinformatics tool was used to find potential targets for NSCLC. Cell proliferation was investigated by Ki67 staining. Cell apoptosis was measured by flow cytometry. mRNA and protein expression in NSCLC cells were detected by RT-qPCR and Western-blot, respectively. Transwell assay was performed to test the cell migration and invasion. In order to investigate the function of exosomal miRNA in NSCLC, in vivo model of NSCLC was constructed.ResultsMiR-770 was identified to be downregulated in NSCLC, and miR-770 agomir could significantly inhibit NSCLC cell proliferation through inducing the apoptosis. Additionally, the metastasis of NSCLC cells was decreased by miR-770 agomir. MAP3K1 was identified to be the target mRNA of miR-770. Meanwhile, tumor cell-derived exosomal miR-770 inhibited M2 macrophage polarization via downregulation of MAP3K1, which in turn suppressed NSCLC cell invasion. Besides, tumor cell-derived exosomal miR-770 markedly decreased NSCLC tumor growth in vivo through suppressing M2 macrophage polarization.ConclusionTumor cell-derived exosomal miR-770 inhibits M2 macrophage polarization to inhibit the invasion of NSCLC cells via targeting MAP3K1. Thus, this study provided a new strategy for the treatment of NSCLC.


The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


2020 ◽  
Vol 20 ◽  
Author(s):  
Weihong Qu ◽  
Jianguo Zhao ◽  
Yaqing Wu ◽  
Ruian Xu ◽  
Shaowu Liu

Background:: Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure although gene therapy may be a promising future alter-native. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgen-ic expression. Objective:: The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice. Method:: The subcutaneous xenograft mode were induced by subcutaneous injection of 2×106 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single-stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9)by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 stain-ing to evaluate tumor angiogenesis. Results:: Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased. Conclusion:: The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and impli-cate rAAV9-Kal as a candidate for gene therapy of lung cancer.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Meilin Chan ◽  
Licun Wu ◽  
Zhihong Yun ◽  
Trevor D. McKee ◽  
Michael Cabanero ◽  
...  

AbstractMalignant pleural mesothelioma (MPM) is an aggressive neoplasm originating from the pleura. Non-epithelioid (biphasic and sarcomatoid) MPM are particularly resistant to therapy. We investigated the role of the GITR-GITRL pathway in mediating the resistance to therapy. We found that GITR and GITRL expressions were higher in the sarcomatoid cell line (CRL5946) than in non-sarcomatoid cell lines (CRL5915 and CRL5820), and that cisplatin and Cs-137 irradiation increased GITR and GITRL expressions on tumor cells. Transcriptome analysis demonstrated that the GITR-GITRL pathway was promoting tumor growth and inhibiting cell apoptosis. Furthermore, GITR+ and GITRL+ cells demonstrated increased spheroid formation in vitro and in vivo. Using patient derived xenografts (PDXs), we demonstrated that anti-GITR neutralizing antibodies attenuated tumor growth in sarcomatoid PDX mice. Tumor immunostaining demonstrated higher levels of GITR and GITRL expressions in non-epithelioid compared to epithelioid tumors. Among 73 patients uniformly treated with accelerated radiation therapy followed by surgery, the intensity of GITR expression after radiation negatively correlated with survival in non-epithelioid MPM patients. In conclusion, the GITR-GITRL pathway is an important mechanism of autocrine proliferation in sarcomatoid mesothelioma, associated with tumor stemness and resistance to therapy. Blocking the GITR-GITRL pathway could be a new therapeutic target for non-epithelioid mesothelioma.


Sign in / Sign up

Export Citation Format

Share Document