scholarly journals Harnessing testing strategies and public health measures to avert COVID-19 outbreaks during ocean cruises

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gerardo Chowell ◽  
Sushma Dahal ◽  
Raquel Bono ◽  
Kenji Mizumoto

AbstractTo ensure the safe operation of schools, workplaces, nursing homes, and other businesses during COVID-19 pandemic there is an urgent need to develop cost-effective public health strategies. Here we focus on the cruise industry which was hit early by the COVID-19 pandemic, with more than 40 cruise ships reporting COVID-19 infections. We apply mathematical modeling to assess the impact of testing strategies together with social distancing protocols on the spread of the novel coronavirus during ocean cruises using an individual-level stochastic model of the transmission dynamics of COVID-19. We model the contact network, the potential importation of cases arising during shore excursions, the temporal course of infectivity at the individual level, the effects of social distancing strategies, different testing scenarios characterized by the test’s sensitivity profile, and testing frequency. Our findings indicate that PCR testing at embarkation and daily testing of all individuals aboard, together with increased social distancing and other public health measures, should allow for rapid detection and isolation of COVID-19 infections and dramatically reducing the probability of onboard COVID-19 community spread. In contrast, relying only on PCR testing at embarkation would not be sufficient to avert outbreaks, even when implementing substantial levels of social distancing measures.

2021 ◽  
Author(s):  
Gerardo Chowell ◽  
Sushma Dahal ◽  
Raquel Bono ◽  
Kenji Mizumoto

AbstractTo ensure the safe operation of schools, workplaces, nursing homes, and other businesses during COVID-19 pandemic there is an urgent need to develop cost-effective public health strategies. Here we focus on the cruise industry which was hit early by the COVID-19 pandemic, with more than 40 cruise ships reporting COVID-19 infections. We apply mathematical modeling to assess the impact of testing strategies together with social distancing protocols on the spread of the novel coronavirus during ocean cruises using an individual-level stochastic model of the transmission dynamics of COVID-19. We model the contact network, the potential importation of cases arising during shore excursions, the temporal course of infectivity at the individual level, the effects of social distancing strategies, different testing scenarios characterized by the test’s sensitivity profile, and the testing frequency. Our findings indicate that PCR testing at embarkation and daily testing of all individuals aboard, together with increased social distancing and other public health measures, should allow for rapid detection and isolation of COVID-19 infections and dramatically reducing the probability of onboard COVID-19 community spread. In contrast, relying only on PCR testing at embarkation would not be sufficient to avert outbreaks, even when implementing substantial levels of social distancing measures.


Author(s):  
Emma Rary ◽  
Sarah M. Anderson ◽  
Brandon D. Philbrick ◽  
Tanvi Suresh ◽  
Jasmine Burton

The health of individuals and communities is more interconnected than ever, and emergent technologies have the potential to improve public health monitoring at both the community and individual level. A systematic literature review of peer-reviewed and gray literature from 2000-present was conducted on the use of biosensors in sanitation infrastructure (such as toilets, sewage pipes and septic tanks) to assess individual and population health. 21 relevant papers were identified using PubMed, Embase, Global Health, CDC Stacks and NexisUni databases and a reflexive thematic analysis was conducted. Biosensors are being developed for a range of uses including monitoring illicit drug usage in communities, screening for viruses and diagnosing conditions such as diabetes. Most studies were nonrandomized, small-scale pilot or lab studies. Of the sanitation-related biosensors found in the literature, 11 gathered population-level data, seven provided real-time continuous data and 14 were noted to be more cost-effective than traditional surveillance methods. The most commonly discussed strength of these technologies was their ability to conduct rapid, on-site analysis. The findings demonstrate the potential of this emerging technology and the concept of Smart Sanitation to enhance health monitoring at the individual level (for diagnostics) as well as at the community level (for disease surveillance).


2021 ◽  
pp. 136787792199745
Author(s):  
Mark Andrejevic ◽  
Hugh Davies ◽  
Ruth DeSouza ◽  
Larissa Hjorth ◽  
Ingrid Richardson

In this article we explore preliminary findings from the study COVIDSafe and Beyond: Perceptions and Practices conducted in Australia in 2020. The study involved a survey followed by interviews, and aimed to capture the dynamic ways in which members of the Australian public perceive the impact of Covid practices – especially public health measures like the introduction of physical and social distancing, compulsory mask wearing, and contact tracing. In the rescripting of public space, different notions of formal and informal surveillance, along with different textures of mediated and social care, appeared. In this article, we explore perceptions around divergent forms of surveillance across social, technological, governmental modes, and the relationship of surveillance to care in our media and cultural practices. What does it mean to care for self and others during a pandemic? How does care get enacted in, and through, media interfaces and public interaction?


2020 ◽  
Author(s):  
Buse Eylul Oruc ◽  
Arden Baxter ◽  
Pinar Keskinocak ◽  
John Asplund ◽  
Nicoleta Serban

Abstract Background. Recent research has been conducted by various countries and regions on the impact of non-pharmaceutical interventions (NPIs) on reducing the spread of COVID19. This study evaluates the tradeoffs between potential benefits (e.g., reduction in infection spread and deaths) of NPIs for COVID19 and being homebound (i.e., refraining from interactions outside of the household).Methods. An agent-based simulation model, which captures the natural history of the disease at the individual level, and the infection spread via a contact network assuming heterogeneous population mixing in households, peer groups (workplaces, schools), and communities, is adapted to project the disease spread and estimate the number of homebound people and person-days under multiple scenarios, including combinations of shelter-in-place, voluntary quarantine, and school closure in Georgia from March 1 to September 1, 2020.Results. Compared to no intervention, under voluntary quarantine, voluntary quarantine with school closure, and shelter-in-place with school closure scenarios 4.5, 23.1, and 200+ homebound adult-days were required to prevent one infection, with the maximum number of adults homebound on a given day in the range of 119K-248K, 465K-499K, 5,388K-5,389K, respectively. Compared to no intervention, school closure only reduced the percentage of the population infected by less than 16% while more than doubling the peak number of adults homebound.Conclusions. Voluntary quarantine combined with school closure significantly reduced the number of infections and deaths with a considerably smaller number of homebound person-days compared to shelter-in-place.


2020 ◽  
Vol 27 (2) ◽  
Author(s):  
A Wilder-Smith ◽  
D O Freedman

Public health measures were decisive in controlling the SARS epidemic in 2003. Isolation is the separation of ill persons from non-infected persons. Quarantine is movement restriction, often with fever surveillance, of contacts when it is not evident whether they have been infected but are not yet symptomatic or have not been infected. Community containment includes measures that range from increasing social distancing to community-wide quarantine. Whether these measures will be sufficient to control 2019-nCoV depends on addressing some unanswered questions.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 220 ◽  
Author(s):  
Renato M. Cotta ◽  
Carolina P. Naveira-Cotta ◽  
Pierre Magal

A SIRU-type epidemic model is employed for the prediction of the COVID-19 epidemy evolution in Brazil, and analyze the influence of public health measures on simulating the control of this infectious disease. The proposed model allows for a time variable functional form of both the transmission rate and the fraction of asymptomatic infectious individuals that become reported symptomatic individuals, to reflect public health interventions, towards the epidemy control. An exponential analytical behavior for the accumulated reported cases evolution is assumed at the onset of the epidemy, for explicitly estimating initial conditions, while a Bayesian inference approach is adopted for the estimation of parameters by employing the direct problem model with the data from the first phase of the epidemy evolution, represented by the time series for the reported cases of infected individuals. The evolution of the COVID-19 epidemy in China is considered for validation purposes, by taking the first part of the dataset of accumulated reported infectious individuals to estimate the related parameters, and retaining the rest of the evolution data for direct comparison with the predicted results. Then, the available data on reported cases in Brazil from 15 February until 29 March, is used for estimating parameters and then predicting the first phase of the epidemy evolution from these initial conditions. The data for the reported cases in Brazil from 30 March until 23 April are reserved for validation of the model. Then, public health interventions are simulated, aimed at evaluating the effects on the disease spreading, by acting on both the transmission rate and the fraction of the total number of the symptomatic infectious individuals, considering time variable exponential behaviors for these two parameters. This first constructed model provides fairly accurate predictions up to day 65 below 5% relative deviation, when the data starts detaching from the theoretical curve. From the simulated public health intervention measures through five different scenarios, it was observed that a combination of careful control of the social distancing relaxation and improved sanitary habits, together with more intensive testing for isolation of symptomatic cases, is essential to achieve the overall control of the disease and avoid a second more strict social distancing intervention. Finally, the full dataset available by the completion of the present work is employed in redefining the model to yield updated epidemy evolution estimates.


2020 ◽  
Author(s):  
Kevin Zhang ◽  
Avika Misra ◽  
Patrick J. Kim ◽  
Seyed M. Moghadas ◽  
Joanne M. Langley ◽  
...  

AbstractBackgroundPublic health measures, such as social distancing and closure of schools and non-essential services, were rapidly implemented in Canada to interrupt the spread of the novel coronavirus disease 2019 (COVID-19).ObjectiveWe sought to investigate the impact of mitigation measures during the spring wave of COVID-19 on the incidence of other laboratory-confirmed respiratory viruses in Hamilton, Ontario.MethodsAll nasopharyngeal swab specimens (n = 57,503) submitted for routine respiratory virus testing at a regional laboratory serving all acute-care hospitals in Hamilton, Ontario between January 2010 and June 2020 were reviewed. Testing for influenza A/B, respiratory syncytial virus, human metapneumovirus, parainfluenza I–III, adenovirus and rhinovirus/enterovirus was done routinely using a laboratory-developed polymerase chain reaction multiplex respiratory viral panel. A Bayesian linear regression model was used to determine the trend of positivity rates of all influenza samples for the first 26 weeks of each year from 2010 to 2019. The mean positivity rate of Bayesian inference was compared with the weekly reported positivity rate of influenza samples in 2020.ResultsThe positivity rate of influenza in 2020 diminished sharply following the population-wide implementation of COVID-19 interventions. Weeks 12-26 reported 0% positivity for influenza, with the exception of 0.1% reported in week 13.ConclusionsPublic health measures implemented during the COVID-19 pandemic were associated with a reduced incidence of other respiratory viruses and should be considered to mitigate severe seasonal influenza and other respiratory virus pandemics.


2020 ◽  
Vol 18 (3) ◽  
pp. 345-350
Author(s):  
Yogesh Acharya ◽  
Suman Pant ◽  
Pradip Gyanwali ◽  
Ganesh Dangal ◽  
Priyanka Karki ◽  
...  

Novel coronavirus disease 2019 (COVID-19) is a growing public health crisis. Despite initial focus on the elderly population with comorbidities, it seems that large studies from the worst affected countries follow a sex-disaggregation pattern. Analysis of available data showed marked variations in reported cases between males and females among different countries with higher mortality in males.  At this early stage of the pandemic, medical datasets at the individual level are not available; therefore, it is challenging to conclude how different factors have impacted COVID-19 susceptibility. Thus, in the absence of patients’ level data, we attempted to provide a theoretical description of how other determinants have affected COVID-19 susceptibility in males compared to females.  In this article, we have identified and discussed possible biological and behavioral factors that could be responsible for the increased male susceptibility. Biological factors include - an absence of X-chromosomes (a powerhouse for immune-related genes), a high level of testosterone that inhibits antibody production, and the presence of Angiotensin-converting enzyme 2 (ACE2) receptors that facilitate viral replication. Similarly, behavioral factors constitute - higher smoking and alcohol consumptions, low level of handwashing practices, and high-risk behavior like non-adherence to health services and reluctance to follow public health measures in males. Keywords: COVID-19; gender; males; sex disaggregation; susceptibility


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Buse Eylul Oruc ◽  
Arden Baxter ◽  
Pinar Keskinocak ◽  
John Asplund ◽  
Nicoleta Serban

Abstract Background Recent research has been conducted by various countries and regions on the impact of non-pharmaceutical interventions (NPIs) on reducing the spread of COVID19. This study evaluates the tradeoffs between potential benefits (e.g., reduction in infection spread and deaths) of NPIs for COVID19 and being homebound (i.e., refraining from interactions outside of the household). Methods An agent-based simulation model, which captures the natural history of the disease at the individual level, and the infection spread via a contact network assuming heterogeneous population mixing in households, peer groups (workplaces, schools), and communities, is adapted to project the disease spread and estimate the number of homebound people and person-days under multiple scenarios, including combinations of shelter-in-place, voluntary quarantine, and school closure in Georgia from March 1 to September 1, 2020. Results Compared to no intervention, under voluntary quarantine, voluntary quarantine with school closure, and shelter-in-place with school closure scenarios 4.5, 23.1, and 200+ homebound adult-days were required to prevent one infection, with the maximum number of adults homebound on a given day in the range of 119 K–248 K, 465 K–499 K, 5388 K-5389 K, respectively. Compared to no intervention, school closure only reduced the percentage of the population infected by less than 16% while more than doubling the peak number of adults homebound. Conclusions Voluntary quarantine combined with school closure significantly reduced the number of infections and deaths with a considerably smaller number of homebound person-days compared to shelter-in-place.


Dementia ◽  
2020 ◽  
pp. 147130122097763
Author(s):  
Pamela Roach ◽  
Angela Zwiers ◽  
Emily Cox ◽  
Karyn Fischer ◽  
Anna Charlton ◽  
...  

The COVID-19 pandemic has necessitated public health measures that have impacted the provision of care for people living with dementia and their families. Additionally, the isolation that results from social distancing may be harming well-being for families as formal and informal supports become less accessible. For those living with dementia and experiencing agitation, social distancing may be even harder to maintain, or social distancing could potentially aggravate dementia-related neuropsychiatric symptoms. To understand the lived experience of social and physical distancing during the COVID-19 pandemic in Canada, we remotely interviewed 21 participants who normally attend a dementia specialty clinic in Calgary, Alberta, during a period where essential businesses were closed and health care had abruptly transitioned to telemedicine. A reflexive thematic analysis was used to analyze the interview and field note data. The impacts of the public health measures in response to the pandemic emerged through iterative analysis in three main categories of experience: (1) personal, (2) health services, and (3) health status (of both persons living with dementia and care partner). Isolation and mental health needs emerged as important impacts to family experiences. This in-depth understanding of the needs and experiences of the pandemic for people living with dementia suggests that innovative means are urgently needed to facilitate provision of remote medicine and also social interaction and integration.


Sign in / Sign up

Export Citation Format

Share Document