scholarly journals Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruno Santos Bezerra ◽  
Flavia Ariany Belato ◽  
Beatriz Mello ◽  
Federico Brown ◽  
Christopher J. Coates ◽  
...  

AbstractThe biological toolkits for aerobic respiration were critical for the rise and diversification of early animals. Aerobic life forms generate ATP through the oxidation of organic molecules in a process known as Krebs’ Cycle, where the enzyme isocitrate dehydrogenase (IDH) regulates the cycle's turnover rate. Evolutionary reconstructions and molecular dating of proteins related to oxidative metabolism, such as IDH, can therefore provide an estimate of when the diversification of major taxa occurred, and their coevolution with the oxidative state of oceans and atmosphere. To establish the evolutionary history and divergence time of NAD-dependent IDH, we examined transcriptomic data from 195 eukaryotes (mostly animals). We demonstrate that two duplication events occurred in the evolutionary history of NAD-IDH, one in the ancestor of eukaryotes approximately at 1967 Ma, and another at 1629 Ma, both in the Paleoproterozoic Era. Moreover, NAD-IDH regulatory subunits β and γ are exclusive to metazoans, arising in the Mesoproterozoic. Our results therefore support the concept of an ‘‘earlier-than-Tonian’’ diversification of eukaryotes and the pre-Cryogenian emergence of a metazoan IDH enzyme.

2018 ◽  
Vol 96 (3) ◽  
pp. 443 ◽  
Author(s):  
Andrés Ernesto Ortiz-Rodriguez ◽  
Eydi Yanina Guerrero ◽  
Juan Francisco Ornelas

<p><strong>Background:</strong> The phylogenetic relationships of the <em>Bursera</em>-host specialist <em>Psittacanthus nudus</em>, <em>P. palmeri </em>and <em>P. sonorae</em> (Loranthaceae) remain uncertain. These mistletoe species exhibit morphological and phenological innovations probably related to their dry habitats, so that determining their phylogenetic position is key to the understanding of factors associated with the morphological evolution within <em>Psittacanthus</em>.</p><p><strong>Questions:</strong> (1) Is the evolution of some morphological innovations in the <em>Bursera</em>-host specialists associated with the ecological conditions linked to host diversification? (2) Does time of diversification in both lineages coincide?<strong></strong></p><p><strong>Study species:</strong> Fourteen species of <em>Psittacanthus</em>.</p><p><strong>Methods: </strong>Sequences of nuclear (ITS) and plastid (<em>trnL-trnF</em>) markers are analyzed with Bayesian inference, maximum likelihood and maximum parsimony methods, and molecular dating under a Bayesian approach estimated to elucidate the phylogenetic position and divergence timing of the<em> Bursera</em>-host specialists.</p><p><strong>Results:</strong> The <em>Bursera</em>-host specialists form a strongly supported clade, named here the ‘<em>Bursera</em> group’. The divergence time for the <em>Bursera</em>-host specialists was estimated at 7.89 Ma. Interestingly, phylogenetic relationships between <em>P. nudus</em> and <em>P. palmeri</em>, as currently circumscribed, were not fully resolved, making <em>P. palmeri</em> paraphyletic.</p><p><strong>Conclusions</strong>: Based on these results, the plants collected by type locality of <em>P. nudus</em> in Honduras should be named <em>P. palmeri</em>. The seasonal deciduousness of <em>P. palmeri </em>(including <em>P. nudus</em>) and morphology of <em>P. sonorae</em> (small size, fleshy leaves) are clearly adaptations to dry ecosystems where these species have lived for a long time. In parallel, the evolutionary history of these mistletoes seems to be correlated with the evolutionary history and diversification patterns of <em>Bursera</em>.</p>


AoB Plants ◽  
2021 ◽  
Author(s):  
Min-Jie Li ◽  
Huan-Xi Yu ◽  
Xian-Lin Guo ◽  
Xing-Jin He

Abstract The disjunctive distribution (Europe-Caucasus-Asia) and species diversification across Eurasia for the genus Allium sect. Daghestanica has fascinating attractions for researchers aiming to understanding the development and history of the modern Eurasia flora. However, no any studies have been carried out to address the evolutionary history of this section. Based on the nrITS and cpDNA fragments (trnL-trnF and rpl32-trnL), the evolutionary history of the third evolutionary line (EL3) of the genus Allium was reconstructed and we further elucidate the evolutionary line of sect. Daghestanica under this background. Our molecular phylogeny recovered two highly supported clades in sect. Daghestanica: the Clade I includes Caucasian-European species and Asian A. maowenense, A. xinlongense and A. carolinianum collected in Qinghai; the Clade II comprises Asian yellowish tepal species, A. chrysanthum, A. chrysocephalum, A. herderianum, A. rude and A. xichuanense. The divergence time estimation and biogeography inference indicated that Asian ancestor located in the QTP and the adjacent region could have migrated to Caucasus and Europe distributions around the Late Miocene and resulted in further divergence and speciation; Asian ancestor underwent the rapid radiation in the QTP and the adjacent region most likely due to the heterogeneous ecology of the QTP resulted from the orogeneses around 4–3 Mya. Our study provides a picture to understand the origin and species diversification across Eurasia for sect. Daghestanica.


2007 ◽  
Vol 55 (2) ◽  
pp. 73 ◽  
Author(s):  
Amy Driskell ◽  
Les Christidis ◽  
B. J. Gill ◽  
Walter E. Boles ◽  
F. Keith Barker ◽  
...  

The results of phylogenetic analysis of two molecular datasets sampling all three endemic New Zealand ‘honeyeaters’ (Prosthemadera novaeseelandiae, Anthornis melanura and Notiomystis cincta) are reported. The undisputed relatedness of the first two species to other honeyeaters (Meliphagidae), and a close relationship between them, are demonstrated. However, our results confirm that Notiomystis is not a honeyeater, but is instead most closely related to the Callaeidae (New Zealand wattlebirds) represented by Philesturnus carunculatus in our study. An estimated divergence time for Notiomystis and Philesturnus of 33.8 mya (Oligocene) suggests a very long evolutionary history of this clade in New Zealand. As a taxonomic interpretation of these data we place Notiomystis in a new family of its own which takes the name Notiomystidae. We expect this new phylogenetic and taxonomic information to assist policy decisions for the conservation of this rare bird.


Hemoglobin ◽  
2018 ◽  
pp. 94-123
Author(s):  
Jay F. Storz

Chapter 5 provides an overview of the evolutionary history of the globin gene superfamily and places the evolution of vertebrate-specific globins in phylogenetic context. The duplication and functional divergence of globin genes has promoted key physiological innovations in respiratory gas transport and other physiological functions during animal evolution. A combination of both tandem gene duplication and whole-genome duplication contributed to the diversification of vertebrate globins. Phylogenetic reconstructions arrange vertebrate globins into those that derive from vertebrate-specific duplications (cytoglobin, globin E, globin Y, and the independently derived myoglobin-like and hemoglobin-like genes of jawed vertebrates and jawless fishes [lampreys and hagfish]) and those that derive from far more ancient duplication events that predate the divergence between deuterostomes and protostomes (androglobin, globin X, and neuroglobin). Tracing the evolutionary history of deuterostome globins reveals evidence for the repeated culling of ancestral diversity, followed by lineage-specific diversification of surviving gene lineages via repeated rounds of duplication and divergence.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ricardo Micolino ◽  
Maykon Passos Cristiano ◽  
Natália Martins Travenzoli ◽  
Denilce Meneses Lopes ◽  
Danon Clemes Cardoso

AbstractFungus-farming ants of the genus Mycetophylax exhibit intra and interspecific chromosome variability, which makes them suitable for testing hypotheses about possible chromosomal rearrangements that endure lineage diversification. We combined cytogenetic and molecular data from Mycetophylax populations from coastal environments to trace the evolutionary history of the clade in light of chromosomal changes under a historical and geographic context. Our cytogenetic analyses revealed chromosomal differences within and among species. M. morschi exhibited three distinct karyotypes and considerable variability in the localization of 45S rDNA clusters. The molecular phylogeny was congruent with our cytogenetic findings. Biogeographical and divergence time dating analyses estimated that the most recent common ancestor of Mycetophylax would have originated at about 30 Ma in an area including the Amazon and Southern Grasslands, and several dispersion and vicariance events may have occurred before the colonization of the Brazilian Atlantic coast. Diversification of the psammophilous Mycetophylax first took place in the Middle Miocene (ca. 18–10 Ma) in the South Atlantic coast, while “M. morschi” lineages diversified during the Pliocene-Pleistocene transition (ca. 3–2 Ma) through founder-event dispersal for the Northern coastal regions. Psammophilous Mycetophylax diversification fits into the major global climatic events that have had a direct impact on the changes in sea level as well as deep ecological impact throughout South America. We assume therefore that putative chromosomal rearrangements correlated with increased ecological stress during the past climatic transitions could have intensified and/or accompanied the divergence of the psammophilous Mycetophylax. We further reiterate that “M. morschi” comprises a complex of at least three well-defined lineages, and we emphasize the role of this integrative approach for the identification and delimitation of evolutionary lineages.


2018 ◽  
Author(s):  
Juan C. Opazo ◽  
Kattina Zavala

AbstractGrowth differentiation factors 1 (GDF1) and 3 (GDF3) are members of the transforming growth factor superfamily (TGF-β) that is involved in fundamental early-developmental processes that are conserved across vertebrates. The evolutionary history of these genes is still under debate due to ambiguous definitions of homologous relationships among vertebrates. Thus, the goal of this study was to unravel the evolution of the GDF1 and GDF3 genes of vertebrates, emphasizing the understanding of homologous relationships and their evolutionary origin. Surprisingly, our results revealed that the GDF1 and GDF3 genes found in amphibians and mammals are the products of independent duplication events of an ancestral gene in the ancestor of each of these lineages. The main implication of this result is that the GDF1 and GDF3 genes of amphibians and mammals are not 1:1 orthologs. In other words, genes that participate in fundamental processes during early development have been reinvented two independent times during the evolutionary history of tetrapods.


Author(s):  
Diana Le Duc ◽  
Torsten Schöneberg

Effective reception, delivery, and processing of information is fundamental to all life forms. Physical and chemical signals are perceived from both outside and inside an organism. The nature, duration, and intensity of signals are processed into information, mainly encoded as concentration differences of ions and molecules that ultimately lead to a reaction of the organism. Although the advent of the first and most primitive signalling system will remain unknown, it probably existed already in the first hours of life. Disturbances of well-orchestrated signalling systems are often the basis of diseases. Understanding the complexity of signalling networks is required for rational intervention in different disease stages. Understanding the evolutionary history of signalling systems can help us unveil the requirements for proper functioning of a given signalling network. This chapter provides an overview of how cellular communication evolved, works, and contributes to our understanding of human diseases in the light of evolution.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Miguel Romero ◽  
R. Cerritos ◽  
Cecilia Ximenez

Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasiteEntamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genusEntamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of someEntamoebaspecies was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence betweenE. histolyticaandE. nuttalliiprobably occurred 5.93 million years ago (Mya); this lineage diverged fromE. dispar9.97 Mya, while the ancestor of the latter separated fromE. invadens68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of theEntamoebagenus.


Sign in / Sign up

Export Citation Format

Share Document