scholarly journals High-temperature superconductor of sodalite-like clathrate hafnium hexahydride

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prutthipong Tsuppayakorn-aek ◽  
Nakorn Phaisangittisakul ◽  
Rajeev Ahuja ◽  
Thiti Bovornratanaraks

AbstractHafnium hydrogen compounds have recently become the vibrant materials for structural prediction at high pressure, from their high potential candidate for high-temperature superconductors. In this work, we predict $$\hbox {HfH}_{6}$$ HfH 6 by exploiting the evolutionary searching. A high-pressure phase adopts a sodalite-like clathrate structure, showing the body-centered cubic structure with a space group of $$Im\bar{3}m$$ I m 3 ¯ m . The first-principles calculations have been used, including the zero-point energy, to investigate the probable structures up to 600 GPa, and find that the $$Im\bar{3}m$$ I m 3 ¯ m structure is thermodynamically and dynamically stable. This remarkable result of the $$Im\bar{3}m$$ I m 3 ¯ m structure shows the van Hove singularity at the Fermi level by determining the density of states. We calculate a superconducting transition temperature ($$T_{c}$$ T c ) using Allen-Dynes equation and demonstrated that it exhibits superconductivity under high pressure with relatively high-$$T_{c}$$ T c of 132 K.

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5830
Author(s):  
Andrzej Ślebarski ◽  
Maciej M. Maśka

We investigated the effect of enhancement of superconducting transition temperature Tc by nonmagnetic atom disorder in the series of filled skutterudite-related compounds (La3M4Sn13, Ca3Rh4Sn13, Y5Rh6Sn18, Lu5Rh6Sn18; M= Co, Ru, Rh), where the atomic disorder is generated by various defects or doping. We have shown that the disorder on the coherence length scale ξ in these nonmagnetic quasiskutterudite superconductors additionally generates a non-homogeneous, high-temperature superconducting phase with Tc⋆>Tc (dilute disorder scenario), while the strong fluctuations of stoichiometry due to increasing doping can rapidly increase the superconducting transition temperature of the sample even to the value of Tc⋆∼2Tc (dense disorder leading to strong inhomogeneity). This phenomenon seems to be characteristic of high-temperature superconductors and superconducting heavy fermions, and recently have received renewed attention. We experimentally documented the stronger lattice stiffening of the inhomogeneous superconducting phase Tc⋆ in respect to the bulk Tc one and proposed a model that explains the Tc⋆>Tc behavior in the series of nonmagnetic skutterudite-related compounds.


2004 ◽  
Vol 59 (2) ◽  
pp. 202-215 ◽  
Author(s):  
Holger Emme ◽  
Tanja Nikelski ◽  
Thomas Schleid ◽  
Rainer Pöttgen ◽  
Manfred Heinrich Möller ◽  
...  

The new orthorhombic meta-oxoborates RE(BO2)3 (≡REB3O6) (RE = Dy-Lu) have been synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1100 °C. They are isotypic to the known ambient pressure phase Tb(BO2)3, space group Pnma. In contrast to Dy(BO2)3, which was also obtained in small amounts under high-temperature conditions, the preparation of the higher orthorhombic homologues RE(BO2)3 (RE = Ho-Lu) was only possible using high-pressure. The meta-oxoborates RE(BO2)3 (RE = Dy-Er) were synthesized as pure products, whereas the orthorhombic phases with RE = Tm-Lu were only obtained as byproducts. With the exception of Yb(BO2)3 it was possible to establish single crystal data for all compounds. The results of temperature-resolved in-situ powder-diffraction measurements, DTA, IR-spectroscopic investigations, and magnetic properties are also presented.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (10) ◽  
pp. 56-61 ◽  
Author(s):  
H.J. Scheel ◽  
F. Licci

The discovery of high temperature superconductivity (HTSC) in oxide compounds has confronted materials scientists with many challenging problems. These include the preparation of ceramic samples with critical current density of about 106 A/cm2 at 77 K and sufficient mechanical strength for large-scale electrotechnical and magnetic applications and the preparation of epitaxial thin films of high structural perfection for electronic devices.The main interest in the growth of single crystals is for the study of physical phenomena, which will help achieve a theoretical understanding of HTSC. Theorists still do not agree on the fundamental mechanisms of HTSC, and there is a need for good data on relatively defect-free materials in order to test the many models. In addition, the study of the role of defects like twins, grain boundaries, and dislocations in single crystals is important for understanding such parameters as the critical current density. The study of HTSC with single crystals is also expected to be helpful for finding optimum materials for the various applications and hopefully achieving higher values of the superconducting transition temperature Tc than the current maximum of about 125 K. It seems unlikely at present that single crystals will be used in commercial devices, but this possibility cannot be ruled out as crystal size and quality improve.


2019 ◽  
Vol 116 (6) ◽  
pp. 2004-2008 ◽  
Author(s):  
Liangzi Deng ◽  
Yongping Zheng ◽  
Zheng Wu ◽  
Shuyuan Huyan ◽  
Hung-Cheng Wu ◽  
...  

By investigating the bulk superconducting state via dc magnetization measurements, we have discovered a common resurgence of the superconducting transition temperatures (Tcs) of the monolayer Bi2Sr2CuO6+δ(Bi2201) and bilayer Bi2Sr2CaCu2O8+δ(Bi2212) to beyond the maximum Tcs (Tc-maxs) predicted by the universal relation between Tcand doping (p) or pressure (P) at higher pressures. The Tcof underdoped Bi2201 initially increases from 9.6 K at ambient to a peak at 23 K at 26 GPa and then drops as expected from the universal Tc-P relation. However, at pressures above 40 GPa, Tcrises rapidly without any sign of saturation up to 30 K at 51 GPa. Similarly, the Tcfor the slightly overdoped Bi2212 increases after passing a broad valley between 20 and 36 GPa and reaches 90 K without any sign of saturation at 56 GPa. We have, therefore, attributed this Tcresurgence to a possible pressure-induced electronic transition in the cuprate compounds due to a charge transfer between the Cu 3dx2−y2and the O 2pbands projected from a hybrid bonding state, leading to an increase of the density of states at the Fermi level, in agreement with our density functional theory calculations. Similar Tc-P behavior has also been reported in the trilayer Br2Sr2Ca2Cu3O10+δ(Bi2223). These observations suggest that higher Tcs than those previously reported for the layered cuprate high-temperature superconductors can be achieved by breaking away from the universal Tc-P relation through the application of higher pressures.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Takeshi Hashishin ◽  
Zhenquan Tan ◽  
Kazuhiro Yamamoto ◽  
Nan Qiu ◽  
Jungeum Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document