scholarly journals Visual predictions, neural oscillations and naïve physics

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Blake W. Saurels ◽  
Wiremu Hohaia ◽  
Kielan Yarrow ◽  
Alan Johnston ◽  
Derek H. Arnold

AbstractPrediction is a core function of the human visual system. Contemporary research suggests the brain builds predictive internal models of the world to facilitate interactions with our dynamic environment. Here, we wanted to examine the behavioural and neurological consequences of disrupting a core property of peoples’ internal models, using naturalistic stimuli. We had people view videos of basketball and asked them to track the moving ball and predict jump shot outcomes, all while we recorded eye movements and brain activity. To disrupt people’s predictive internal models, we inverted footage on half the trials, so dynamics were inconsistent with how movements should be shaped by gravity. When viewing upright videos people were better at predicting shot outcomes, at tracking the ball position, and they had enhanced alpha-band oscillatory activity in occipital brain regions. The advantage for predicting upright shot outcomes scaled with improvements in ball tracking and occipital alpha-band activity. Occipital alpha-band activity has been linked to selective attention and spatially-mapped inhibitions of visual brain activity. We propose that when people have a more accurate predictive model of the environment, they can more easily parse what is relevant, allowing them to better target irrelevant positions for suppression—resulting in both better predictive performance and in neural markers of inhibited information processing.

2020 ◽  
Author(s):  
Blake W. Saurels ◽  
Wiremu Hohaia ◽  
Kielan Yarrow ◽  
Alan Johnston ◽  
Derek H. Arnold

AbstractPrediction is considered a core function of the human visual brain, but relating this suggestion to real life is problematic, as findings regarding the neural correlates of prediction rely on abstracted experiments, not reminiscent of a typical visual diet. We addressed this by having people view videos of basketball, and asking them to predict jump shot outcomes while we recorded eye movements and brain activity. We used the brain’s understanding of physics to manipulate predictive success, by inverting footage. People had enhanced alpha-band activity in occipital brain regions when watching upright videos, and this predicted both an increase in predictive success and enhanced ball tracking. Alpha-band activity in visual brain regions has been linked to inhibition, so we regard our results as evidence that inhibition of task irrelevant information is a core function of predictive processes in the visual brain, enacted as people complete visual tasks typical of daily life.


2014 ◽  
Vol 112 (6) ◽  
pp. 1307-1316 ◽  
Author(s):  
Isabel Dombrowe ◽  
Claus C. Hilgetag

The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes.


2017 ◽  
Author(s):  
Peter W. Donhauser ◽  
Esther Florin ◽  
Sylvain Baillet

AbstractMagnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. Imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges1. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience.Author summaryThe oscillatory activity of the brain produces a repertoire of signal dynamics that is rich and complex. Noninvasive recording techniques such as scalp magnetoencephalography and electroencephalography (MEG, EEG) are key methods to advance our comprehension of the role played by neural oscillations in brain functions and dysfunctions. Yet, there are methodological challenges in mapping these elusive components of brain activity that have remained unresolved. We introduce a new mapping technique, called imaging with embedded statistics (iES), which alleviates these difficulties. With iES, signal detection is constrained explicitly to the operational hypotheses of the study design. We show, in a variety of experimental contexts, how iES emphasizes the oscillatory components of brain activity, if any, that match the experimental hypotheses, even in deeper brain regions where signal strength is expected to be weak in MEG. Overall, the proposed method is a new imaging tool to respond to a wide range of neuroscience questions concerning the scaffolding of brain dynamics via anatomically-distributed neural oscillations.


Author(s):  
James R. Stieger ◽  
Stephen Engel ◽  
Haiteng Jiang ◽  
Christopher C. Cline ◽  
Mary Jo Kreitzer ◽  
...  

AbstractBrain-computer interfaces (BCIs) are promising tools for assisting patients with paralysis, but suffer from long training times and variable user proficiency. Mind-body awareness training (MBAT) can improve BCI learning, but how it does so remains unknown. Here we show that MBAT allows participants to learn to volitionally increase alpha band neural activity during BCI tasks that incorporate intentional rest. We trained individuals in mindfulness-based stress reduction (MBSR; a standardized MBAT intervention) and compared performance and brain activity before and after training between randomly assigned trained and untrained control groups. The MBAT group showed reliably faster learning of BCI than the control group throughout training. Alpha-band activity in EEG signals, recorded in the volitional resting state during task performance, showed a parallel increase over sessions, and predicted final BCI performance. The level of alpha-band activity during the intentional resting state correlated reliably with individuals’ mindfulness practice as well as performance on a sustained attention task. Collectively, these results show that MBAT modifies a specific neural signal used by BCI. MBAT, by increasing patients’ control over their brain activity during rest, may increase the effectiveness of BCI in the large population who could benefit from alternatives to direct motor control.


e-Neuroforum ◽  
2013 ◽  
Vol 19 (1) ◽  
Author(s):  
K. Sieben ◽  
H. Hartung ◽  
A. Wolff ◽  
I. Hanganu-Opatz

AbstractThe periodicity of brain activity became ob­vious even after the first attempt to capture it, with Hans Berger noting in 1929 that the “electroencephalogram represents a con­tinuous curve with continuous oscillations”. This rhythmicity of neural activity, the ‘melo­dy’ of the brain, has since gained interest as an energy-efficient strategy for the organisa­tion and communication both within and be­tween brain regions. While it is now known that these oscillations actively contribute to sensory perception and cognition in the adult brain, their function during development is still largely unknown. Recent experimental data revealed the ability of immature human and rodent brain to generate various patterns of electrical activity. Their properties and un­derlying mechanisms may vary among dif­ferent brain areas. However, these early pat­terns of activity seem to facilitate the refine­ment of cortical maps involved in sensory perception as well as mnemonic and execu­tive processing. Here we review recent stud­ies, which characterize the early oscillatory activity and demonstrate its impact on brain development.


2020 ◽  
Author(s):  
Wiremu Hohaia ◽  
Blake W. Saurels ◽  
Alan Johnston ◽  
Kielan Yarrow ◽  
Derek H. Arnold

AbstractOne of the seminal findings of cognitive neuroscience is that the power of alpha-band (∼10 Hz) brain waves, in occipital regions, increases when people close their eyes. This has encouraged the view that alpha oscillations are a default dynamic, to which the visual brain returns in the absence of input. Accordingly, we might be unable to increase the power of alpha oscillations when the eyes are closed, above the level that would usually ensue. Here we report counter evidence. We used electroencephalography (EEG) to record brain activity when people had their eyes open and closed, before and after they had adapted to radial motion. The increase in the power of alpha oscillations when people closed their eyes was enhanced by adaptation to a broad range of radial motion speeds. This effect was greatest for 10Hz motion, but robust for other frequencies, and specifically for 7.5Hz. This last observation is important, as it rules against an ongoing entrainment of activity, at the adaptation frequency, as an explanation for our results. Instead, our data show that visual processes remain active when people close their eyes, and these can be modulated by adaptation to increase the power of alpha oscillations in occipital brain regions.


2021 ◽  
Author(s):  
Kaoru Nashiro ◽  
Jungwon Min ◽  
Hyun Joo Yoo ◽  
Christine Cho ◽  
Shelby L Bachman ◽  
...  

Heart rate variability is a robust biomarker of emotional well-being, consistent with the shared brain networks regulating emotion regulation and heart rate. While high heart rate oscillatory activity clearly indicates healthy regulatory brain systems, can increasing this oscillatory activity also enhance brain function? To test this possibility, we randomly assigned 106 young adult participants to one of two 5-week interventions involving daily biofeedback that either increased heart rate oscillations (Osc+ condition) or had little effect on heart rate oscillations (Osc- condition) and examined effects on brain activity during rest and during regulating emotion. In this healthy cohort, the two conditions did not differentially affect anxiety, depression or mood. However, the Osc+ intervention increased low-frequency heart rate variability and increased brain oscillatory dynamics and functional connectivity in emotion-related resting-state networks. It also increased down-regulation of activity in somatosensory brain regions during an emotion regulation task. The Osc- intervention did not have these effects. These findings indicate that heart rate oscillatory activity not only reflects the current state of regulatory brain systems but also changes how the brain operates beyond the moments of high oscillatory activity.


2016 ◽  
Vol 28 (12) ◽  
pp. 1964-1979 ◽  
Author(s):  
Marlies E. Vissers ◽  
Joram van Driel ◽  
Heleen A. Slagter

Filter mechanisms that prevent irrelevant information from consuming the limited storage capacity of visual STM are critical for goal-directed behavior. Alpha oscillatory activity has been related to proactive filtering of anticipated distraction. Yet, distraction in everyday life is not always anticipated, necessitating rapid, reactive filtering mechanisms. Currently, the oscillatory mechanisms underlying reactive distractor filtering remain unclear. In the current EEG study, we investigated whether reactive filtering of distractors also relies on alpha-band oscillatory mechanisms and explored possible contributions by oscillations in other frequency bands. To this end, participants performed a lateralized change detection task in which a varying and unpredicted number of distractors were presented both in the relevant hemifield, among targets, and in the irrelevant hemifield. Results showed that, whereas proactive distractor filtering was accompanied by lateralization of alpha-band activity over posterior scalp regions, reactive distractor filtering was not associated with modulations of oscillatory power in any frequency band. Yet, behavioral and post hoc ERP analyses clearly showed that participants selectively encoded relevant information. On the basis of these results, we conclude that reactive distractor filtering may not be realized through local modulation of alpha-band oscillatory activity.


2020 ◽  
Vol 31 (1) ◽  
pp. 426-438
Author(s):  
James R Stieger ◽  
Stephen Engel ◽  
Haiteng Jiang ◽  
Christopher C Cline ◽  
Mary Jo Kreitzer ◽  
...  

Abstract Brain–computer interfaces (BCIs) are promising tools for assisting patients with paralysis, but suffer from long training times and variable user proficiency. Mind–body awareness training (MBAT) can improve BCI learning, but how it does so remains unknown. Here, we show that MBAT allows participants to learn to volitionally increase alpha band neural activity during BCI tasks that incorporate intentional rest. We trained individuals in mindfulness-based stress reduction (MBSR; a standardized MBAT intervention) and compared performance and brain activity before and after training between randomly assigned trained and untrained control groups. The MBAT group showed reliably faster learning of BCI than the control group throughout training. Alpha-band activity in electroencephalogram signals, recorded in the volitional resting state during task performance, showed a parallel increase over sessions, and predicted final BCI performance. The level of alpha-band activity during the intentional resting state correlated reliably with individuals’ mindfulness practice as well as performance on a breath counting task. Collectively, these results show that MBAT modifies a specific neural signal used by BCI. MBAT, by increasing patients' control over their brain activity during rest, may increase the effectiveness of BCI in the large population who could benefit from alternatives to direct motor control.


2016 ◽  
Vol 115 (1) ◽  
pp. 168-177 ◽  
Author(s):  
Joshua J. Foster ◽  
David W. Sutterer ◽  
John T. Serences ◽  
Edward K. Vogel ◽  
Edward Awh

Working memory (WM) is a system for the online storage of information. An emerging view is that neuronal oscillations coordinate the cellular assemblies that code the content of WM. In line with this view, previous work has demonstrated that oscillatory activity in the alpha band (8–12 Hz) plays a role in WM maintenance, but the exact contributions of this activity have remained unclear. Here, we used an inverted spatial encoding model in combination with electroencephalography (EEG) to test whether the topographic distribution of alpha-band activity tracks spatial representations held in WM. Participants in three experiments performed spatial WM tasks that required them to remember the precise angular location of a sample stimulus for 1,000-1,750 ms. Across all three experiments, we found that the topographic distribution of alpha-band activity tracked the specific location that was held in WM. Evoked (i.e., activity phase-locked to stimulus onset) and total (i.e., activity regardless of phase) power across a range of low-frequency bands transiently tracked the location of the sample stimulus following stimulus onset. However, only total power in the alpha band tracked the content of spatial WM throughout the memory delay period, which enabled reconstruction of location-selective channel tuning functions (CTFs). These findings demonstrate that alpha-band activity is directly related to the coding of spatial representations held in WM and provide a promising method for tracking the content of this online memory system.


Sign in / Sign up

Export Citation Format

Share Document